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I think it’s much more interesting to live not knowing than to have answers which might

be wrong. I have approximate answers, and possible beliefs, and different degrees of certainty

about different things, but I’m not absolutely sure of anything, and there are many things I

don’t know anything about, such as whether it means anything to ask why we’re here, and

what the question might mean. . .But I don’t have to know an answer. I don’t feel frightened

by not knowing things, by being lost in a mysterious universe without having any purpose,

which is the way it really is, as far as I can tell, possibly.

Richard Feynman



Dedication

To Maw, who asked questions
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Abstract

A perceptual decision is often accompanied by a subjective feeling of confidence. Because

humans are able to easily report this feeling in a laboratory setting, confidence reports have

long been objects of study. However, the computations underlying confidence reports are not

well understood.

It has been proposed that confidence in categorization tasks should be defined as the

observer’s estimated probability of being correct. This definition extends Bayesian decision

theory so that it describes confidence reports as well as decisions. Although this definition

is elegant, the notion that confidence reports are Bayesian is a hypothesis rather than an

established fact. In this dissertation, our aim is to test that hypothesis, which we call the

Bayesian confidence hypothesis (BCH).

We find that a proposed approach to determining the computational origins of confidence

is flawed. Some authors have proposed that one way to determine whether confidence is

Bayesian is to derive qualitative signatures of Bayesian confidence, and then see whether

they are present in behavioral or neural data. We analyze some of these proposed signatures

and find that they are less useful than they might have seemed. Specifically, they are neither

necessary nor sufficient signatures of Bayesian confidence, which means that observation

of (or failure to observe) these signatures provides an uncertain amount of evidence for (or

against) the BCH. There has been a confusion in the literature about a second possible

signature. We find no evidence that this second signature is ever expected under Bayesian

confidence. Finally, the application of these signatures is a qualitative exercise because it may

not always be clear whether data displays a signature, especially noisy data. Our analysis of

the signatures leads us to conclude that the most powerful way to test the BCH is by using

quantitative model comparison.
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We test human subjects on a set of binary categorization tasks designed to distinguish

Bayesian models of confidence from other plausible models. In all experiments, the primary

variable of interest to the observer was the orientation of a stimulus.

In one set of experiments, we induce sensory uncertainty by manipulating properties of the

stimulus, such as contrast. We find that subjects take their sensory uncertainty into account,

and that confidence appears qualitatively Bayesian. Quantitatively, however, heuristic models

provide a much better fit to the data. Our conclusions are robust to variants of both the

experiment and the Bayesian models.

In another experiment, we induce sensory uncertainty by manipulating the subjects’

attention. As in the previous set of experiments, we find that confidence reports are

qualitatively Bayesian. In this experiment, we are unable to distinguish the Bayesian model

from the heuristic models.

Finally, we describe an exploratory analysis intended to explain why confidence reports

might not be Bayesian. We trained feedforward neural networks on our tasks as if they were

naïve human subjects and fit our behavioral models to the data produced by these trained

networks. We find that the same heuristic models that fit our human data well also fit the

network-produced data. We suggest a future research program in which neural network

behavior is compared to human behavior on the basis of model rankings.
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Chapter 1

Introduction

We often have a sense of confidence in our percepts and in the decisions that we make

based on those percepts. For instance, imagine that you see a person some distance away,

and you have a feeling that the person is your friend. If the person is far away, you may

have relatively low confidence in your belief that the person is your friend. But as you

approach the person, you may feel an increasing sense of confidence, which eventually crosses

some threshold, leading you to decide to wave “hello.” In this case, you derived from your

retinal input an image that led to a belief about the person’s identity, as well as information

about the uncertainty associated with that image. Through some unknown process, you

combined the two pieces of information, waving only when confident that you would avoid

the humiliation of waving at a stranger.

Such a “feeling of knowing” (Brown, 1991; Meyniel et al., 2015) may help humans and

nonhuman animals make better decisions. When driving through a storm, if someone has

low confidence about the speed and distance of the car in front of you, he may drive more

conservatively. A radiologist’s confidence in her classification of a tumor as malignant or

benign may partially determine her patient’s course of treatment. A sense of confidence may

improve learning (Meyniel et al., 2015). Having an internal sense of confidence might also

allow observers to update decision-making strategies in response to feedback: if a decision

1



made with high confidence turns out to be incorrect, it might be time to change strategies

(Purcell and Kiani, 2016).

The ability to express confidence plays an important role in group decision-making. A

group often makes better decisions than even the best individual in a group (Frith and Frith,

2012). Some results suggest that groups achieve this “two heads are better than one” effect by

optimally weighting each group member’s decision by their confidence (Bahrami et al., 2010;

Koriat, 2012). In some situations, a group may also adopt a simple “confidence heuristic”

(Thomas and McFadyen, 1995) strategy in which it selects the decision of its most confident

member.I

In addition to being useful to organisms, confidence reports can also be used by exper-

imenters as a tool for quantifying an organism’s ability to understand its own cognition

(i.e., their metacognitive abilities). A number of metrics have been developed for measuring

the ability to distinguish between one’s correct and incorrect judgments (Fleming and Lau,

2014; Maniscalco and Lau, 2012). These metrics can be used to compare the metacognitive

abilities of different populations or species. For instance, older people have been shown to

have reduced metacognitive abilities (Palmer et al., 2014). This might explain why confidence

and performance become increasingly dissociated as we age, as evidenced by the fact that

most older drivers rate themselves as good drivers regardless of their history of crashes (Ross

et al., 2012).

1.1 Techniques for measuring confidence

There are many techniques that allow researchers to measure confidence in humans and

nonhuman animals, which have been thoroughly reviewed in Kepecs and Mainen (2012).

I This strategy, however, can be harmful to group decision-making for difficult decisions or in cases
where group members have different levels of task performance (Bang et al., 2014; Koriat, 2012).
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These methods can include post-decision wagering (Persaud et al., 2007), in which a subject

places a bet on their choice being correct. There are other methods that can be used to

collect confidence ratings from nonhuman animals, such as offering a “sure bet” option, in

which the animal opts not to make a choice between categories, but to instead receive a

smaller but certain reward. This method has been used to collect confidence ratings from

monkeys (Kiani and Shadlen, 2009; Smith et al., 1997), pigeons (Sutton and Shettleworth,

2008), rats (Foote and Crystal, 2007), and dolphins (Smith et al., 1995). Another option is to

measure the amount of time that an animal is willing to wait for a reward before restarting a

trial; an animal can maximize its reward rate by waiting longer on trials where it is more

confident (Kepecs et al., 2008).

A common problem in experiments using confidence reports such as these is that it is

not always clear that the chosen technique truly measures the observer’s subjective feeling

of perceptual confidence.II For instance, in experiments that use post-decision wagering,

observers may simply learn to maximize their reward. In this case, experimenters are

training the observer to report a particular form of confidence. Similarly, the small reward

associated with a “sure bet” choice may itself guide behavior, making it possible that

ostensible “confidence” reports merely reflect some reward-conditioned behavior rather than

any subjective feeling of confidence (Smith et al., 2008). There are some ways around these

problems, which are particularly critical for researchers studying confidence in nonhumans

(Hampton, 2009; Kepecs and Mainen, 2012; Smith et al., 2008). However, researchers studying

human confidence need not concern themselves with these issues—to get a confidence report

from a human, we just have to ask.

The most straightforward paradigm for eliciting confidence reports, which to this point has

II We sidestep the philosophical question of whether perceptual states (categorical or otherwise) are
accompanied by a subjective feeling of confidence (Denison, 2017; Morrison, 2016, 2017), and
assume that they are.
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only been used in humans, is to ask subjects to explicitly rate their confidence on an integer

scale. This technique has been in use for over a century; the first known psychophysical

exploration of confidence ratings was in 1884, by Peirce and Jastrow (1884). The authors

conducted a experiment that is roughly similar to binary perceptual categorization experiments

conducted by researchers today and to those described in this dissertation. They had subjects

hold two weights and say which one was heavier, and also state their confidence that their

judgment was correct. They found, curiously, that for choices where the subject reported zero

confidence, the subject still performed above chance.III Theirs is the first recorded experiment

to have probed the interaction between physical stimulus, choice, and subjective confidence

reports. Since then, this rating scale method has been used in dozens of experiments.

Recent work has focused on identifying brain regions and neural mechanisms responsible

for the computation of confidence in humans (Fleming and Dolan, 2012; Fleming et al., 2010;

Rutishauser et al., 2015), nonhuman primates (Fetsch et al., 2014; Kiani and Shadlen, 2009;

Komura et al., 2013), and rodents (Kepecs et al., 2008). It has been argued that the search

for neural correlates of confidence would be more fruitful if researchers were equipped with

a strong model of confidence and knew what kind of signals to look for in neural activity

(Kepecs and Mainen, 2012; Pouget et al., 2016).

1.2 Models of confidence

Despite the long history of collecting explicit confidence ratings, relatively little work has

been done to understand the computations that transform a sensory measurement into a

confidence rating. Confidence ratings have been frequently used as a tool for computing ROC

(Receiver Operating Characteristic) curves, used to measure sensitivity, or for measuring

III Note, however, that the subjects were the experimenters themselves (as was the norm in nineteenth-
century experimental psychology), and that this effect is easily faked.
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metacognitive ability (Fleming and Lau, 2014). But they have rarely been themselves a focus

of computational modeling. Broadly, this dissertation focuses on exploring the computational

underpinnings of the subjective feeling of confidence, as measured through explicit confidence

ratings. More specifically, we aim to test a normative model of confidence ratings as being a

function of the posterior probability of being correct.

Some of the oldest models of confidence in binary categorization are based on signal

detection theory (SDT) (Green and Swets, 1966). In signal detection theory, the observer

has a noisy measurement that came from one of two categories. To determine their category

choice, they compare their measurement to a criterion. SDT confidence models posit that

the observer’s confidence is the distance between the measurement and the criterion (Vickers,

1979).

SDT confidence models make an unusual prediction in situations where sensory noise is

variable. In such models, an observer reports high confidence whenever the measurement

falls above some criterion. Assuming that these criteria are fixed across noise conditions, on

trials with high noise, measurements are increasingly likely to fall into the “high confidence”

bin, even though average performance will be lower.IV

As an alternative to SDT models, several researchers have proposed a Bayesian alterna-

tive: confidence should be defined as the observer’s posterior probability of being correct

(Drugowitsch et al., 2014b; Hangya et al., 2016; Kepecs and Mainen, 2012; Meyniel et al.,

2015; Pouget et al., 2016). Bayesian decision theory provides a general, normative, and often

quantitatively accurate account of perceptual decisions in a wide variety of tasks in which an

IV Although we use this unusual prediction of the SDT models as a way to partly motivate a Bayesian
model of confidence, we should note that Rahnev et al. (2011) do find evidence that humans report
higher visibility for more noisy stimuli. They take this as evidence that humans use visibility criteria
that are fixed across noise conditions. One caveat with their finding is that asking subjects to report
visibility causes them to adopt a more conservative strategy than if asked to report confidence
(Rausch and Zehetleitner, 2016); this may partly explain the results of Rahnev et al. (2011).
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organism has noisy sensory input (Knill and Richards, 1996; Körding, 2007; Ma, 2012; Ma

and Jazayeri, 2014). According to this theory, the Bayesian observer combines knowledge

about the statistical structure of the world with the present sensory input to compute a

posterior probability distribution over possible states of the world. In categorization tasks, a

Bayesian model computes the log posterior odds of one category as the decision variable and

makes a decision by comparing that decision variable to some criterion based on category

base rate (i.e., prior) and the expected reward from either category. Computing that decision

variable requires that an organism knows the noise associated with its sensory measurement.

A Bayesian model of confidence is, conceptually, a simple extension to the Bayesian model

of choice; it uses the Bayesian decision variable to determine confidence as well as choice.V

In contrast to the above-mentioned SDT confidence models, Bayesian models always take

measurement noise into account. The decision variable in a Bayesian model of confidence can

be directly mapped onto the observer’s posterior probability that the observer is correct.

Defining confidence as Bayesian would seem to allow neuroscientists to search for neural

activity that appears to be “confidence” signals, confidence being thus defined (Kepecs and

Mainen, 2012; Kepecs et al., 2008). This is a fine approach for many research questions.

But although this definition of confidence has normative appeal, it may not be justified by

evidence; there are no studies that convincingly show that Bayesian models provide better

descriptions of confidence than other models. Here, we treat the notion that confidence is

the posterior probability of being correct not as a definition, but as a hypothesis, which we

V All models in this dissertation, Bayesian or non-Bayesian, consider category choice and confidence
report to be derived from the same decision variable. Because of this, our work does not directly
address recent modeling efforts that treat category choice formation and confidence as emerging
from distinct processes (Fleming and Daw, 2017; Moran et al., 2015; Pleskac and Busemeyer, 2010;
van den Berg et al., 2016).
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call the Bayesian confidence hypothesis (BCH).VI

The primary goal of this dissertation is to test the BCH, which requires that we not

predefine confidence as Bayesian. Indeed, defining confidence as Bayesian appears to preclude

a meaningful test of the BCH. We instead define confidence as “what humans report when

you ask how confident they are.” We use this definition because human subjects are able

to easily report these naïve confidence ratings on a task, and because using this report as

a definition allows us to determine the computations that underlie confidence. It has been

proposed that such semantic and non-mathematical definitions of confidence are problematic

(Kepecs and Mainen, 2012). However, for asking if human confidence reports are Bayesian,

we see no other clear option. Surprisingly, no previous studies have asked whether naïve

confidence ratings are Bayesian.

Recent research on whether confidence can be considered Bayesian has fallen into one of

two broad approaches. The first approach is to derive qualitative patterns (i.e., “signatures”)

that should be visible in the data if the data were generated by a Bayesian observer (Hangya

et al., 2016). Following the derivation of these signatures, one can plot behavioral data, look

to confirm the presence of the signatures, and draw conclusions about what underlying model

is likely to have produced the data (Navajas et al., 2017; Sanders et al., 2016). It would be

hugely convenient if this approach were likely to yield scientific insight, because it would

eliminate the need for painstaking quantitative work. But, in addition to other issues that

we will discuss, this approach is ill-conceived, as they are neither necessary nor sufficient

conditions for the BCH. The second category is to fit computational models to confidence

ratings and compare the qualities of the fits. This approach is consistent with work that has

frequently been done in the perceptual categorization literature, but rarely (Aitchison et al.,

VI This hypothesis is natural for categorization tasks, but might not be natural for other tasks. In an
estimation task, for instance, it might be more natural to test whether confidence is a function of
the posterior variance.
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2015) in the confidence literature.

1.3 Dissertation outline

This dissertation will consist of a theoretical chapter making the case in favor of quantitative

over qualitative techniques for testing the BCH, two experimental chapters, one exploratory

chapter, and a conclusion.

In Chapter 2, we describe the general task setup that we will use and describe a technique

that has been proposed for testing the BCH. Recently, authors have proposed gathering

evidence in favor of the BCH by observing whether qualitative signatures of Bayesian

confidence are present in data. We critically discuss this technique and conclude that

quantitative model comparison is required.

In Chapter 3, we collect confidence reports from human subjects in binary categorization

tasks. In an attempt to do a thorough test of the BCH, we fit and compare dozens of

computational models. In this chapter, stimulus uncertainty is induced by manipulating

external factors such as stimulus contrast.

Chapter 4 is an extension of the work in Chapter 3, except that stimulus uncertainty is

induced by manipulating an internal factor: subjects’ attention levels.

In Chapter 5, we describe an exploratory analysis of neural networks that may offer insight

into why the brain might converge upon a heuristic solution to confidence. We intend this

chapter to be a proof of concept, rather than a fully developed analysis.

Finally, in Chapter 6, we describe some caveats of our work and our thoughts on the

future of confidence research.
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Chapter 2

Limitations of proposed signatures of
Bayesian confidence

2.1 Introduction

In recent years, some researchers have tested the Bayesian confidence hypothesis (BCH) by

formally comparing Bayesian confidence models to other models (Aitchison et al., 2015).

Although this is the most thorough method to test the BCH, it can be painstaking in practice.

To avoid this approach, one could instead try to describe qualitative patterns that should

theoretically emerge from Bayesian confidence and then look for those patterns in real data.

Partly following this motivation, Hangya et al. (2016) propose signatures of the BCH, some

of which have been observed in behavior (Kepecs et al., 2008; Lak et al., 2014; Sanders et al.,

2016) and in neural activity (Kepecs et al., 2008; Komura et al., 2013).

These signatures are not unique to the Bayesian model; instead, they are expected under

a number of other models (Kepecs and Mainen, 2012). This may be considered an advantage

for a confidence researcher who is not interested in the precise algorithmic underpinnings

of confidence. A researcher may observe these signatures in behavior, reasonably conclude

that she has evidence that the organism is computing some form of confidence, and probe
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more deeply into, for instance, neural activity (Kepecs et al., 2008). In this manuscript,

however, we consider the researcher concerned with understanding the algorithm used by an

organism to compute confidence. For such a researcher, the fact that these signatures emerge

from multiple models poses a problem: These signatures are not sufficient conditions for any

particular model of confidence, including the Bayesian model. In other words, observation of

these signatures does not constitute strong evidence in favor of any particular model. Because

of this insufficiency, we view with skepticism any research that uses observation of these

signatures as the basis for a claim that an organism uses a Bayesian form (Navajas et al.,

2017), “statistical” form (Sanders et al., 2016), or any other specific form of confidence.

Although they do not claim that the signatures are sufficient conditions, Hangya et al.

do claim that the signatures are necessary conditions for the BCH, i.e., that if confidence is

Bayesian, these patterns will be present in behavior. If the signatures are necessary but not

sufficient conditions for the BCH, observation of a single signature does not imply that the

BCH is true; instead, one would need to observe several signatures in order to gain confidence

in the nature of confidence.I However, we show that two of these signatures are not necessary

conditions, reducing the overall value of the qualitative signature method for testing the

BCH.

One signature is a mean confidence (i.e., the observer’s estimated probability of being

correct) of 0.75 for trials with neutral evidence. We show that, under the Bayesian model,

this signature will only be observed when noise is very low and stimulus distributions do not

overlap.

I Restating this logic in probabilistic terms: A signature being a necessary condition for the BCH
implies that p(signature observed | BCH is true) = 1. A signature being an insufficient condition
implies that p(signature observed | BCH is false) > 0. By Bayes’ rule, for signatures that are both
necessary and insufficient, p(BCH is true | signature(s) observed) will increase with the observation
of each signature but will never reach 1.
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Another signature is that, as stimulus magnitude increases, mean confidence increases on

correct trials but decreases on incorrect trials. Here, we show that under the Bayesian model,

this signature breaks down when noise is low and stimulus distributions are Gaussian. We

also explain and resolve a recent discrepancy in the literature that is related to an alternative

formulation of this signature (Navajas et al., 2017).

2.2 Binary categorization task

We restrict ourselves to the following, widely used, family of binary perceptual categorization

tasks (Green and Swets, 1966). On each trial, a category C ∈ {−1, 1} is randomly drawn

with equal probability. Each category corresponds to a stimulus distribution p(s | C), where

s may specify the value of many possible kinds of stimuli (e.g., an odor mixture (Kepecs

et al., 2008), the net motion energy of a random dot kinematogram (Kiani and Shadlen, 2009;

Newsome et al., 1989), the orientation of a Gabor (Chapters 3 and 4 of this dissertation;

Qamar et al., 2013), or the mean orientation of a series of Gabors (Navajas et al., 2017)).

The stimulus distributions are mirrored across s = 0, i.e., p(s | C = −1) = p(−s | C = 1).

We assume that the observer has full knowledge of these distributions. A stimulus s is drawn

from the chosen stimulus distribution and presented to the observer. The observer does not

have direct access to the value of s; instead, they take a noisy measurement x, drawn from

the distribution p(x | s) = N (x; s, σ), which denotes a Gaussian distribution over x with
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mean s and standard deviation σ (Figure 2.1).II The above description applies for the tasks

used in this dissertation, except that, in Task B (Chapters 3 to 5), the stimulus distributions

are not mirrored across s = 0.

category

stimulus

measurement

s

C

x
Figure 2.1 Generative model of the task.

If the observer’s choice behavior is Bayes-optimal (i.e., minimizes expected loss which, in

a task where each category has equal reward, is equivalent to maximizing accuracy), they

compute the posterior probability of each category by marginalizing over all possible values

of s: p(C | x, σ) =
∫
p(C | s)p(s | x, σ) ds. They then make a category choice Ĉ by choosing

the category with the highest posterior: Ĉ = argmaxC p(C | x, σ). For mirrored stimulus

distributions, that amounts to choosing Ĉ = 1 when x > 0, and Ĉ = −1 otherwise.

Furthermore, if the observer’s confidence behavior is Bayesian, then it will be

some function of the posterior probability of the chosen category. This probability is

II Because some of our notation relates to that used in Hangya et al. (2016), we provide this table
to enable easier comparison between the two papers. In some cases, the variables are not exactly
identical: the terms in Hangya et al. may be more general. This does not affect the validity of our
claims. For consistency, we always describe their work using our notation.

This dissertation Hangya et al. (2016)
true category C not used

stimulus s evidence d
stimulus magnitude |s| discriminability ∆

measurement x percept d̂
choice Ĉ choice ϑ

confidence p(C = Ĉ | x, σ) = conf(x, σ) confidence c = ξ(d̂, ϑ)
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p(C = Ĉ | x, σ) = maxC p(C | x, σ). Because it is a deterministic function of x and σ, we will

refer to it as conf(x, σ).III

2.3 Derivation of Bayesian confidence

We will now derive conf(x, σ) for all stimulus distributions used in this chapter (other chapters

will use only Gaussian stimulus distributions). As described in Section 2.2, if an observer’s

confidence behavior is Bayesian, it is a function of the posterior probability of the most

probable category. By Bayes’ rule,

conf(x, σ) = max
C

p(C | x)

= max
C

p(x | C)p(C)∑
C p(x | C)p(C)

= max
C

p(x | C)∑
C p(x | C) . (2.1)

In the last step, we eliminated the prior because each category is equally likely (i.e.,

p(C = 1) = p(C = −1)) and we assume that the observer knows this. We now derive the

task-specific likelihood functions p(x | C) used in our simulations. The observer does not

know the true stimulus value s, but does know that the measurement is drawn from a

Gaussian distribution with a mean of s and s.d. σ. Using this knowledge, the optimal observer

marginalizes over s by convolving the stimulus distributions with their noise distribution:

p(x | C) =
∫
p(x | s)p(s | C) ds

=
∫
N (x; s, σ)p(s | C) ds. (2.2)

III Note that our assumption that confidence and category choice are deterministic functions of x
amounts to an assumption that there is no noise at the action (i.e., reporting) stage.

13



For uniform category distributions, we plug p(s | C) = U(s; a, b), which denotes a

continuous uniform distribution over s between a and b, into Equation (2.6) and simplify:

pU(x | C) =
∫
N (x; s, σ)U(s; a, b) ds

= 1
b− a

∫ b

a
N (x; s, σ) ds

= 1
σ(b− a) (Φ(b− x)− Φ(a− x)) , (2.3)

where Φ is the cumulative distribution function of the standard normal distribution. For

Gaussian category distributions, we plug p(s | C) = N (s;µC , σC) into Equation (2.6) and

simplify:

pG(x | C) =
∫
N (x; s, σ)N (s;µC , σC) ds

= N
(
x;µC ,

√
σ2 + σ2

C

)
, (2.4)

using σC = 0 if stimuli from a given category always take on the same value µC .

Finally, plug the task-appropriate likelihood function (Equation (2.7) or Equation (2.8))

into Equation (2.5).

2.4 0.75 signature: Mean Bayesian confidence is 0.75 for neutral

evidence trials.

Hangya et al. (2016) propose a signature concerning neutral evidence trials, those in which

the stimulus s is equal to 0 (i.e., there is equal evidence for each category), and observer

performance is at chance. Bayesian confidence on each individual trial will always be at least

0.5 (assuming that measurement noise is nonzero). One can intuitively understand why this
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is: in binary categorization, if the posterior probability of one option is less than 0.5, the

observer makes the other choice, which has a posterior probability above 0.5. Therefore, all

trials have confidence of at least 0.5, and mean confidence at any value of s is also greater

than 0.5. Hangya et al. go beyond these results and provide a proof that, under some

assumptions, mean Bayesian confidence on neutral evidence trials is exactly 0.75.IV We refer

to this prediction as the 0.75 signature, and we show that it is not always expected under a

normative Bayesian model.

2.4.1 The 0.75 signature is not a necessary condition for Bayesian confidence

To determine the conditions under which the 0.75 signature is expected under the Bayesian

model, we used Monte Carlo simulation with the following procedure. For a range of

measurement noise levels σ, we drew measurements x from N (x; s = 0, σ). Using the

IV The proof of the 0.75 signature depends on a lemma proved by Hangya et al. (2016): Integrating
the product of the probability density function f and the distribution function F of any probability
distribution symmetric to zero over the positive half-line results in 3/8:∫ ∞

0
f(t)F (t)dt = 3

8 .

There is a shorter proof of the lemma, which is as follows. Use integration by parts, and that
f(t) = F ′(t) by definition:∫ ∞

0
f(t)F (t) dt = F (∞)F (∞)− F (0)F (0)−

∫ ∞
0

f(t)F (t) dt

2
∫ ∞

0
f(t)F (t) dt = F (∞)F (∞)− F (0)F (0).

Because F is a cumulative distribution function of a probability distribution symmetric across zero,
F (∞) = 1 and F (0) = 1

2 :

2
∫ ∞

0
f(t)F (t) dt = 1− 1

4∫ ∞
0

f(t)F (t) dt = 3
8 .
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function conf(x, σ) that the observer would use if they believed stimuli were being drawn

from category-conditioned stimulus distributions p(s | C) (rather than all s being zero), we

computed Bayesian confidence for each measurement. We then took the mean confidence,

equal to Ex|s=0 [conf(x, σ)].

The 0.75 signature only holds if the s.d. of the noise is very low relative to the range

of the stimulus distribution. Additionally, the observer must believe that the category-

conditioned stimulus distributions are non-overlapping (Figure 2.2a, dotted line). If the

observer believes that the category-conditioned stimulus distributions overlap by even a small

amount, mean confidence on neutral evidence trials drops to 0.5. Therefore, in an experiment

with overlapping stimulus distributions, one should not expect an optimal observer to produce

the 0.75 signature. In experiments with non-overlapping distributions, an observer’s false

belief about the distributions might also cause them to not produce the 0.75 signature. We

use the example of overlapping uniform stimulus distributions (Figure 2.2a, solid lines) to

demonstrate the fragility of this signature, although such distributions are not common in the

literature. Overlapping Gaussian stimulus distributions (Figure 2.2b), however, are relatively

common in the perceptual categorization literature (Ashby and Gott, 1988; Green and Swets,

1966; Norton et al., 2017; Qamar et al., 2013) and arguably more naturalistic (Maddox,

2002). Because the 0.75 signature requires both low measurement noise and non-overlapping

stimulus distributions, mean 0.75 confidence at neutral evidence trials is not a necessary

condition for Bayesian confidence.

Additionally, the 0.75 signature is only relevant in experiments where subjects are specifi-

cally asked to report confidence in the form of a perceived probability of being correct (or

are incentivized to do so through a scoring rule (Brier, 1950; Gneiting and Raftery, 2007;

Massoni et al., 2014), although in this case it has been argued (Ma and Jazayeri, 2014) that

any Bayesian behavior might simply be a learned mapping). In other words, in an experiment
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where subjects are asked to report confidence on a 1 through 5 scale, a mean confidence of 3

only corresponds to 0.75 if one makes the a priori assumption that there is a linear mapping

between rating and perceived probability of being correct (Sanders et al., 2016).

Figure 2.2 The 0.75 signature is not a necessary condition for Bayesian confidence. The y-axis indicates
mean Bayesian confidence on trials for which s = 0. Each inset corresponds to a line, in the same
top-to-bottom order. Dotted and solid lines indicate, respectively, non-overlapping and overlapping
categories. For each value of σ, 50,000 trials were simulated. (a) Trials were simulated using uniform
stimulus distributions defined by p(s | C = 1) = U(s; a, b), with b − a = r = 2. When the stimulus
categories are non-overlapping (i.e., with a = 0 and b = 2, top inset), the 0.75 signature can be observed
at zero measurement noise (dotted black line). However, mean Bayesian confidence decreases as a
function of measurement noise. Additionally, when the distributions overlap slightly (bottom two insets),
the 0.75 signature will not be observed (solid black lines). (b) Moreover, when the stimulus categories
are Gaussian distributions defined by p(s | C = 1) = N (s;µC = 1, σC), the 0.75 signature will not be
observed at any σC or measurement noise level σ. One can intuitively understand why mean confidence
is 0.5 for overlapping categories at very low measurement noise and increases with measurement noise.
At very low measurement noise, the observer makes measurements that are very close to zero, which the
observer “knows” are associated with a low probability of being correct. However, as noise increases, the
observer starts to make measurements that have higher magnitude, leading the observer to believe that
they have a higher probability of being correct.

2.4.1.1 Relevant assumptions in Hangya et al.

Hangya et al. describe an assumption that is critical for the 0.75 signature: each category-

conditioned stimulus distribution is a continuous uniform distribution. However, the 0.75
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signature depends on two additional assumptions that they make implicitly.

Their proof depends on confidence for one category being equal to p(s > 0 | x, σ) (p. 1852).

This equality further depends on their implicit assumption both of non-overlapping categories

and of negligible measurement noise; these assumptions are equivalent to only considering the

leftmost point of the solid line in Figure 2.2a. To understand why, we derive their definition

of confidence as p(s > 0 | x, σ).

Without loss of generality, we look at trials with choice Ĉ = 1. First, Hangya et al.

make the assumption that the categories are non-overlapping uniforms (i.e., p(s | C = 1) =

U(s; 0, b)). This allows them to write (Section 2.4.2):

confĈ=1(x, σ) = p(x | C = 1)
p(x | C = 1) + p(x | C = −1)

=
∫ b

0 p(x | s, σ) ds∫ b
0 p(x | s, σ) ds+

∫ 0
−b p(x | s, σ) ds

Second, they make the assumption that b is very large relative to measurement noise σ. This

allows them to write:

confĈ=1(x, σ) ≈
∫∞

0 p(x | s, σ) ds∫∞
0 p(x | s, σ) ds+

∫ 0
−∞ p(x | s, σ) ds

≈
∫ ∞

0
p(x | s, σ) ds

≈ p(s > 0 | x, σ).

If the stimulus distributions overlap by even a small amount or if measurement noise is

non-negligible, confidence cannot be written as p(s > 0 | x, σ), and the proof of the 0.75

signature breaks down.
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2.4.2 The 0.75 signature is not a sufficient condition for Bayesian confidence

We have shown that the 0.75 signature is not a necessary condition for Bayesian confidence,

but is it a sufficient condition? It is possible to show that a signature is a sufficient condition

if it is not possible to observe it under any other model. However, one could put forward a

trivial model that always produces exactly midrange confidence on each trial, regardless of

the measurement. Therefore, the 0.75 signature is not a sufficient condition.

We will now derive conf(x, σ) for all stimulus distributions used in this chapter (other

chapters will use only Gaussian stimulus distributions). As described in Section 2.2, if an

observer’s confidence behavior is Bayesian, it is a function of the posterior probability of the

most probable category. By Bayes’ rule,

conf(x, σ) = max
C

p(C | x)

= max
C

p(x | C)p(C)∑
C p(x | C)p(C)

= max
C

p(x | C)∑
C p(x | C) . (2.5)

In the last step, we eliminated the prior because each category is equally likely (i.e.,

p(C = 1) = p(C = −1)) and we assume that the observer knows this. We now derive the

task-specific likelihood functions p(x | C) used in our simulations. The observer does not

know the true stimulus value s, but does know that the measurement is drawn from a

Gaussian distribution with a mean of s and s.d. σ. Using this knowledge, the optimal observer

marginalizes over s by convolving the stimulus distributions with their noise distribution:

p(x | C) =
∫
p(x | s)p(s | C) ds

=
∫
N (x; s, σ)p(s | C) ds. (2.6)
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For uniform category distributions, we plug p(s | C) = U(s; a, b), which denotes a

continuous uniform distribution over s between a and b, into Equation (2.6) and simplify:

pU(x | C) =
∫
N (x; s, σ)U(s; a, b) ds

= 1
b− a

∫ b

a
N (x; s, σ) ds

= 1
σ(b− a) (Φ(b− x)− Φ(a− x)) , (2.7)

where Φ is the cumulative distribution function of the standard normal distribution. For

Gaussian category distributions, we plug p(s | C) = N (s;µC , σC) into Equation (2.6) and

simplify:

pG(x | C) =
∫
N (x; s, σ)N (s;µC , σC) ds

= N
(
x;µC ,

√
σ2 + σ2

C

)
, (2.8)

using σC = 0 if stimuli from a given category always take on the same value µC .

Finally, plug the task-appropriate likelihood function (Equation (2.7) or Equation (2.8))

into Equation (2.5).

2.5 Divergence signature #1: As stimulus magnitude increases,

mean confidence increases on correct trials but decreases on

incorrect trials

Hangya et al. (2016) propose the following pattern as a signature of Bayesian confidence: On

correctly categorized trials, mean confidence is an increasing function of stimulus magnitude

(here, |s|), but on incorrect trials, it is a decreasing function (Figure 2.3a). We refer to
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this pattern as the divergence signature.V The signature is present in Bayesian confidence

when category-conditioned stimulus distributions are uniform, in both high- and low-noise

regimes (Figure 2.3a,b). The intuition for why this pattern may occur is as follows. On

correct trials, as stimulus magnitude increases, the mean magnitude of the measurement x

increases. Because measurement magnitude is monotonically related to Bayesian confidence,

this increases mean confidence. However, on incorrect trials (in which x and s have opposite

signs), the mean magnitude of the measurement decreases (Figure 2.5a), which in turn

decreases mean confidence (Figure 2.5b,c).

The divergence signature has been observed in some behavioral experiments (Kepecs et al.,

2008; Komura et al., 2013; Lak et al., 2014; Sanders et al., 2016). However, we demonstrate

that, as with the 0.75 signature the divergence signature is not always expected under a

normative Bayesian model.VI Therefore, the appearance of the signature in these papers

should not be taken to mean that it should be generally expected.

2.5.1 Divergence signature #1 is not a necessary condition for Bayesian confi-

dence

To determine the conditions under which the divergence signature is expected under the

Bayesian model, we used Monte Carlo simulation with the following procedure. We generated

V Kepecs and Mainen (2012), Insabato et al. (2016), and Fleming and Daw (2017) call it the (folded)
“X-pattern.”

VI Our finding is distinct from that of Insabato et al. (2016), who show that the divergence signature
would not be predicted under a non-Bayesian model in which the observer uses two measurements
on each trial. Our analyses only concern Bayesian models in which the observer has a single
measurement on each trial.

Our finding is also distinct from that of Fleming and Daw (2017), who show that the divergence
signature would not be predicted if the experimenter could plot confidence as a function of the
internal measurement x. Our analyses only concern confidence as a function of stimulus magnitude
|s| which, unlike x, is known by the experimenter.
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Figure 2.3 The divergence signature is not a necessary condition for Bayesian confidence. For two stimulus distribution
types, we simulated 2 million trials. (a) With uniform stimulus distributions defined by p(s | C = 1) = U(s; 0, 2), the
divergence signature is predicted under both high- and low-noise regimes. The fadedness of the line indicates conditions
for which there are few trials. (b) Heatmap indicates the slope of the pink lines in a. At all values of σ and distribution
range, the slope is negative. Slopes were obtained by generating binned mean confidence values as in a and fitting a
line to those values. Black markers indicate the parameters used in a, with left dot corresponding to right plot and
conversely. (c) With Gaussian stimulus distributions defined by p(s | C = 1) = N (s; 1, σC = 0.7), the divergence
signature appears only when measurement noise is high, i.e., when σ . 0.6. (d) As in b but for Gaussian distributions
with means of ±1. Under some values of σ and σC , the slope is positive, indicating that the divergence signature is not
a necessary condition for Bayesian confidence. (e) Visual explanation for why, under Gaussian stimulus distributions, the
divergence signature appears only at relatively high σ values. Plots represent the same data as in c, but over s instead
of |s|. For clarity, we only use trials drawn from category C = 1; the argument is unaffected. Incorrect trials fall into
two categories: on trials in which s is positive but x is negative due to noise, confidence goes down as |s| increases
(branch 3); on trials in which s and x are both negative, confidence increases with |s| (branch 4). At high levels of
noise, branch 3 has more trials than branch 4, and dominates the averaging that occurs when plotting trials from both
categories over |s|. At low levels of noise, branch 4 instead dominates, and the divergence signature disappears. Note
that, for non-overlapping distributions (e.g., those in a,b), there are no trials in which s has a different sign than the
stimulus distribution mean, so branches 2 and 4 do not exist, and the divergence signature is always present.
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stimuli s, drawn with equal probability from stimulus distributions p(s | C = −1) and

p(s | C = 1). We generated noisy measurements x from these stimuli, using measurement

noise levels σ. We generated observer choices from these measurements, using the optimal

decision rule x > 0⇒ Ĉ = 1, and we computed Bayesian confidence for every trial.

When stimulus distributions are Gaussian and measurement noise is low relative to

stimulus distribution width, the divergence signature is not expected (Figure 2.3c,d). To

understand why this is, imagine an optimal observer with zero measurement noise. In tasks

with overlapping categories, even this observer cannot achieve perfect performance; for a

given category with a positive mean, there are stimuli that have a negative value, resulting

in an incorrect choice. For such stimuli, confidence increases with stimulus magnitude. At

relatively low noise levels, these stimuli represent the majority of all incorrect trials for

the category (Figure 2.3e). This effect causes the divergence signature to disappear when

averaging over trials drawn from both categories. Because of this, the divergence signature is

not a necessary condition for Bayesian confidence. Note that an experimenter could avoid

this issue by plotting confidence as a function of signed stimulus value s and by not averaging

over both categories, which would produce plots such as Figure 2.3e.

2.5.1.1 Relevant assumption in Hangya et al.

We have shown that the applicability of the divergence signature may be limited to particular

cases. By contrast, the proof in Hangya et al. suggests that it is quite general. We can

resolve this paradox by making explicit the assumptions hidden in the proof. They assume

that, “for incorrect choices. . . with increasing evidence discriminability, the relative frequency

of low-confidence percepts increases while the relative frequency of high-confidence percepts
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decreases” (p. 1847).VII This assumption is violated in the case of overlapping Gaussian

stimulus distributions: for some incorrect choices (branch 4 of Figure 2.3e), as s becomes

more discriminable (i.e., very negative), the frequency of high-confidence reports increases.

At low levels of measurement noise, this causes the divergence signature to disappear.

2.5.2 Divergence signature #1 is not a sufficient condition for Bayesian confi-

dence

It has been previously noted that the signature is expected under a number of non-Bayesian

models (Fleming and Daw, 2017; Insabato et al., 2016; Kepecs and Mainen, 2012). Here, we

describe an additional non-Bayesian model, one in which confidence is a function only of

|x|, the magnitude of the measurement.VIII In the general family of binary categorization

tasks described in Section 2.2, the confidence of this model is monotonically related to

the confidence of the Bayesian model conf(x, σ). Thus, when the divergence signature is

predicted by the Bayesian model, it is also predicted by this measurement model. Therefore,

the divergence signature is not a sufficient condition for Bayesian confidence.

VII Their original assumption actually reads, “for any given confidence c, the relative frequency of
percepts mapping to c by ξ changes monotonically with evidence discriminability for any fixed choice.”
In our terminology, this is equivalent to saying that, as |s| increases, the frequency of reporting
any particular level of confidence changes monotonically. This is not correct even in the case of
uniform stimulus distributions; for example, at low noise, as discriminability increases, the frequency
of medium-confidence reports will increase and then decrease. Their restatement of this assumption
specifically for incorrect choices, which we cite in the main text, is correct for non-overlapping
stimulus distributions. Because they restate the assumption correctly, their following argument holds
except under the scenario described in the main text.

VIII In the Bayesian model, observers use their knowledge of their uncertainty. In this alternative standard
signal detection theoretical model (Green and Swets, 1966; Kepecs and Mainen, 2012), observers
ignore uncertainty, making confidence only a function of the distance between the measurement and
the decision bound. Previous studies have referred to similar models as Difference (Aitchison et al.,
2015) or Fixed (Qamar et al., 2013). In Chapters 3 to 5, we will also call this model Fixed.
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2.6 Divergence signature #2: As measurement noise decreases,

mean confidence increases on correct trials but decreases on

incorrect trials

An alternative version of the divergence signature has emerged in the literature. Navajas et al.

(2017) conduct an experiment in which they present, on each trial, a series of oriented Gabors

with orientations pseudorandomly drawn from uniform distributions with different variances.

They then ask subjects to judge whether the mean orientation is left or right of vertical and to

provide a confidence report. They plot confidence as a function of correctness and orientation

distribution variance, expecting that, if confidence were Bayesian, their data would look like

Figure 2.3a. Contrary to their expectations, they observe no such divergence (Figure 2.4a).

However, instead of plotting stimulus magnitude, which produces divergence signature #1

(Section 2.5), they plot measurement noiseIX on the x-axis (Figure 2.4a), in effect proposing

a divergence signature distinct from the one described in Section 2.5. We will refer to this

as divergence signature #2: as measurement noise decreases, mean confidence increases on

correct trials but decreases on incorrect trials. We find no evidence that this signature is

expected under the Bayesian confidence model, resolving the seemingly unexpected result in

Navajas et al.

IX However, because the orientations were drawn such that the mean orientation of each set was the
same for all trials in a category, there was no variance over the stimulus variable of interest (the
per-trial mean) within categories. Therefore, what they describe as stimulus variance factors into
a Bayesian model of confidence (and into their non-Bayesian decision model) only by changing
measurement noise. Additionally, because there is no variance over stimulus magnitude within
categories, they are unable to determine whether divergence signature #1 is present in their data.

25



2.6.1 Divergence signature #2 is not expected under Bayesian confidence

To determine whether divergence signature #2 is expected under the Bayesian model, we used

Monte Carlo simulation with the following procedure. We generated stimuli with s = ±1,

corresponding to C = ±1.X For a range of measurement noise levels σ, we drew noisy

measurements x from N (x; s, σ). We generated observer choices from these measurements,

using the optimal decision rule x > 0⇒ Ĉ = 1. We computed Bayesian confidence for every

trial.

As measurement noise decreases, mean confidence increases for both correct and incorrect

trials (Figure 2.4b). This pattern also holds when the category-conditioned stimulus distribu-

tions are uniform or Gaussian, and if one plots a measure of stimulus distribution variance

on the x-axis (either uniform distribution range r or Gaussian distribution s.d. σC). This

indicates that the signature is not expected under the BCH.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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nature of the noise ensures that the uncertainty in the update of the 
estimate scales with the size of the observed sample, θi. At the end 
of the sequence, choice is determined by the sign of the final value 
of the mean (μ30): the agent chooses clockwise if μ30 is positive, and 
anticlockwise if μ30 is negative.

This model explains two important quantitative patterns 
observed in our behavioural data. First, all items in the sequence 
had a significant influence on choice (regression weights against 
zero, t(29) >  3.17, p <  0.003 for all items), but later samples had more 
influence than earlier ones (slope of regression weights against zero, 
t(29) =  4.70, p =  10−6). This recency effect was modulated by the 
learning rate, λ (Supplementary Fig. 1). Second, we observed that 
items in high-variance sequences had smaller influence on choice 
(F(3,29) =  57.8, p ~ 0), indicating larger integration noise in these 
trials. The last term in equation (1), modulated by γ, captures this 
pattern (Supplementary Fig. 2).

We also tested an alternative model that tracks the mean of the 
sequence in a deterministic way, and then makes stochastic deci-
sions. This model, however, failed to explain the trend in Fig. 1c, 
which shows that performance increases as variance decreases (see 
Supplementary Fig. 3 for details and model comparison).

Computation of confidence. In this task, confidence should reflect 
the perceived probability of being correct, for which participants 
need to have an estimate of the variance of μ30. We assumed that 
they are able to compute the true variance associated with equa-
tion (1) (although our findings do not require this assumption, 
see Supplementary Notes). Thus, perceived variance, denoted σ30

2 , 
is given by
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=

−(1 ) (2)
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The model described by equations (1) and (2), which we call the 
stochastic updating model, is illustrated in Fig. 2a. Given μ30 and σ30

2 ,  
subjects can compute, on each trial, the perceived probability of 
being correct, p (correct) (shaded area under the Gaussian distribu-
tion in Fig. 2a).

Using this model, we estimated the expected values of p (correct) 
for different variance conditions (see Methods, equation (9) and 
Fig. 2b). When we separated these values by correct and incorrect 
trials, we observed a pattern that has been suggested on the basis of 
normative arguments15,20: confidence on correct trials should increase 
as the variance decreases, whereas confidence on error trials should 
show the opposite effect, and decrease as the variance decreases. We 
did not, however, observe this pattern in our data, at least not on 
average: as shown in Fig. 1d, confidence on correct trials did indeed 
increase as variance dropped, but on error trials confidence was rela-
tively independent of variance (F(3,29) =  0.57, p = 0.63).

This last observation indicates that, again on average, subjects 
were mis-estimating confidence: they should have been less con-
fident on low-variance error trials than in high-variance error tri-
als, as their probability of being correct was lower (dashed curve in 
Fig. 2b). This suggests that subjects partially based their confidence 
on the uncertainty in the value of the mean orientation—a reason-
able, if suboptimal, heuristic. Under this heuristic, low-variance 
trials would raise their confidence relative to high-variance ones. 
An appropriate weighting of perceived probability of being correct, 
shown in Fig. 2b, and a function of uncertainty such as the observed 
Fisher information (the inverse of σ30

2 ), shown in Fig.  2c, could, 
therefore, explain the confidence ratings observed in Fig. 1d.

To formally test this proposal, we compared the normative model 
of confidence based on only p (correct) with seven alternative mod-
els based on different linear combinations of p (correct), mean, stan-
dard deviation, variance and Fisher information (Supplementary 
Fig.  4). We evaluated which combination provided a better fit to 
confidence ratings using ordinal logistic regressions (see Methods). 
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Fig. 1 | Tracking mean evidence in rapid serial visual presentations. a, Thirty tilted Gabor patches were serially flashed at the fovea, updated at 4�Hz. 
Participants made a binary decision about whether the mean in the sequence was tilted to the right or left, followed by a confidence rating. After an 
inter-trial interval (ITI), which was uniformly distributed between 0.7 and 0.9 seconds, a new trial began. Full details of the task are available in the 
Methods section. b, The samples were drawn from a uniform distribution with mean, m, set to either exactly�+ 3 degrees or exactly − 3 degrees. The dashed 
line shows m�= �+ 3. The endpoints of the uniform distributions were m�± �v, with v�=�10, 14, 24 or 45 degrees, yielding four conditions with four different 
variances. c, Performance increased with decreasing variance. The dots show the average performance across subjects, and the vertical lines depict the 
s.e.m. The solid black curve shows the best fit of the stochastic updating model (equations (1) and (2)). d, Confidence reports averaged over all subjects. 
The vertical lines show s.e.m. At the population level, confidence in incorrect trials remains approximately constant as a function of variance.
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Figure 2.4 Divergence signature #2 is not present either in the Navajas et al. data or in the prediction
of the Bayesian model. (a) Average confidence in a binary perceptual categorization task, reproduced
with permission from Navajas et al. (2017). (b) Mean Bayesian confidence as a function of measurement
noise is not expected to show opposite trends when conditioned on correctness. At each value of σ,
50,000 stimuli were stimulated, with s = ±1.

X This corresponds to Navajas et al. (2017), as described in Section 2.6.
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2.6.1.1 Related text in Hangya et al.

It is quite understandable that Navajas et al. took measurement noise as their definition of

evidence discriminability; Hangya et al. explicitly allow it in their description of the divergence

signature: “any monotonically increasing function of expected outcome [i.e., accuracy]. . . can

serve as evidence discriminability” (p. 1847). Measurement noise (or, in keeping strictly

with Hangya et al.’s definition, measurement precision) is indeed monotonically related to

accuracy. However, the divergence signature requires an additional assumption: “for incorrect

choices. . . with increasing evidence discriminability, the relative frequency of low-confidence

percepts increases while the relative frequency of high-confidence percepts decreases” (p.

1847; see also, Section 2.5.1.1). Simulation shows that this assumption is violated when

measurement noise is used as the definition of evidence discriminability.

2.6.1.2 Why the intuition for divergence signature #1 does not predict divergence signature

#2

We have shown that, although divergence signature #1 is not completely general, it is

expected under the Bayesian model in some cases (Figure 2.3a). By contrast, there is no

indication that divergence signature #2 is ever expected. This may be surprising, because

the intuition for divergence signature #1 might seem to apply equally to divergence signature

#2. However, the effect of measurement noise on mean confidence is different than the effect

of stimulus magnitude because measurement noise, unlike stimulus magnitude, affects the

mapping from measurement to confidence on a single trial.

Mean Bayesian confidence is a function of two factors: confidence on a single trial and

the probability of the corresponding measurement.

E
x

[conf(x, σ)] =
∫

conf(x, σ)p(x | s, σ) dx
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The intuition for divergence signature #1 is as follows: as stimulus magnitude |s| increases,

the measurement distribution p(x | s, σ) shifts, and the mean measurement magnitude on

incorrect trials decreases (Figure 2.5a). One might expect this intuition to also result in

divergence signature #2, since the effect of decreased measurement noise σ on p(x | s, σ) also

results in a decreased measurement magnitude on incorrect trials (Figure 2.5d). However,

σ additionally affects conf(x, σ), the per-trial, deterministic mapping from measurement

and noise level to Bayesian confidence (Figure 2.5e), whereas stimulus magnitude does

not (Figure 2.5b). Therefore, when σ is variable, the resulting effect on the measurement

distribution is insufficient for describing the pattern of mean confidence on incorrect trials,

requiring simulation. We simulated experiments as described in Section 2.5.1, and demonstrate

why stimulus magnitude and measurement noise have different effects on mean confidence on

incorrect trials (Figure 2.5).

2.6.2 Use of divergence signature #2 in Navajas et al.

Navajas et al. motivate their findings by first building a non-Bayesian model of confidenceXI

that does predict divergence signature #2, i.e., that, as measurement noise decreases, mean

confidence decreases on incorrect trials. They then fail to observe the signature in their

averaged data (Figure 2.4a), observing instead that confidence is constant on incorrect trials.

Some subjects (e.g., subject 16 in their Figure 3), however, do show the signature. This leaves

them with a puzzle—what model can describe the data? To answer this, they modify their

model to incorporate Fisher information, which increases as measurement noise decreases.

XI In their model, which they label “normative,” the observer continually updates a weighted average
of each stimulus with the previous average. This model is not equivalent to (nor a supermodel of)
the optimal model, which keeps a running sum of stimuli, dividing by N for each stimulus or at the
end of the trial. They motivate their non-Bayesian model by the observation that recent samples
have a relatively higher influence on subject decisions, but do not show fits of a fully Bayesian model
to their data.
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Figure 2.5 Explanation for why divergence signature #1 is sometimes expected, but why divergence
signature #2 might not ever be expected. Although increased stimulus magnitude and decreased
measurement noise both cause the mean measurement magnitude to decrease on incorrect trials, they
have different effects on mean confidence. At each value of σ, 2 million stimuli were simulated, using
uniform stimulus distributions defined by p(s | C = 1) = U(s; 0, 2) (the case of Figure 2.3a). (a)
As described previously (Drugowitsch, 2016; Hangya et al., 2016; Kepecs et al., 2008), an increase
in stimulus magnitude causes the mean measurement magnitude to decrease on incorrect trials. (b)
Measurements are mapped onto confidence values using the deterministic function conf(x, σ), which
is equivalent to the posterior probability that the choice is correct (Section 2.2). (c) This mapping
results in divergence signature #1, a decrease in mean confidence on incorrect trials. Arrows do not
align precisely with the simulated mean, because the confidence of the mean measurement is not exactly
equal to the mean confidence. (d) A decrease in measurement noise also causes the mean measurement
magnitude to decrease on incorrect trials. (e) Because the mapping from measurement to confidence
conf(x, σ) is dependent on σ, measurements from the less noisy distribution have higher confidence. (f)
Because the confidence mapping is dependent on σ, divergence signature #2 is not necessarily expected
under Bayesian confidence.

This post-hoc model is able to “bend” the confidence curve upward as measurement noise

decreases, producing curves that more closely resemble their data.

The main shortcoming of this argument is that a Bayesian model of confidence would not

actually predict divergence signature #2, as we have shown above. Indeed, their averaged

data more closely resembles the prediction of the Bayesian model (Figure 2.4b) than that

of their non-Bayesian model without Fisher information (their Figure 2b). Therefore, the
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absence of the signature in their averaged data does not suggest anything beyond a Bayesian

model; it is possible that the Bayesian model would provide a good fit to most of their

subjects. If the model provided a poor fit to subjects that do show divergence signature #2,

a post-hoc model would have to incorporate some other mechanism that could “bend” the

confidence curve downward, which would not be Fisher information.

2.7 Other signatures

A third signature in Hangya et al. (2016) that we do not discuss here (that confidence equals

accuracy), is like the 0.75 signature in that it either requires explicit reports of perceived

probability of being correct, or the experimenter to choose a mapping between rating and

perceived probability of being correct (Section 2.4.1). For any monotonic relationship between

accuracy and confidence, it is likely that there is some mapping that equates the two, in

which case the signature would not be a sufficient condition for the BCH.

A fourth signature (that confidence allows a better prediction of accuracy than stimulus

magnitude alone) is, like divergence signature #1, also predicted by the measurement model

(Section 2.5.2) and is therefore also not a sufficient condition for the BCH.

2.8 Discussion

We have demonstrated that, even in the relatively restricted class of binary categorization

tasks that we consider here (Section 2.2), some signatures are neither necessary nor sufficient

conditions for the BCH. Specifically, the 0.75 signature is only expected under non-overlapping

stimulus distributions. Additionally, despite claims that divergence signature #1 is “robust

to different stimulus distributions,” (Kepecs and Mainen, 2012) it is only expected under

non-overlapping stimulus distributions or under Gaussian stimulus distributions with high
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measurement noise. Because of their non-generality, these signatures are therefore not

necessary conditions of Bayesian confidence. Furthermore, they may be observed under

non-Bayesian models, indicating that they are also not sufficient conditions (Fleming and

Daw, 2017; Insabato et al., 2016).

A discrepancy in the literature (Navajas et al., 2017) has emerged through the confusion

of divergence signature #1 with a second form, in which stimulus magnitude is replaced

with measurement noise.XII We have shown that, while divergence signature #1 holds in

some cases, there is no evidence that the second form is ever expected under the BCH, which

resolves this discrepancy.

Some of our critique of the signatures has focused on the implicit assumption that

experiments use non-overlapping stimulus distributions. One could object to our critique by

questioning the relevance of overlapping stimulus distributions, given that non-overlapping

stimulus distributions are the norm in the confidence literature (Aitchison and Latham, 2014;

Kepecs and Mainen, 2012; Kepecs et al., 2008; Sanders et al., 2016). But although the work in

this dissertation (Chapters 3 and 4) represents the first use of overlapping categories to study

confidence, such categories have a long history in the perceptual categorization literature

(Ashby and Gott, 1988; Green and Swets, 1966; Healy and Kubovy, 1981; Lee and Janke,

1964; Liu et al., 1995; Qamar et al., 2013; Sanborn et al., 2010). It has been argued that

overlapping Gaussian stimulus distributions have several properties that make them more

naturalistic than non-overlapping distributions (Maddox, 2002). The property most relevant

here is that with overlapping categories, perfect performance is impossible, even with zero

measurement noise. With overlapping categories, as in real life, identical stimuli may belong

to multiple categories. Imagine a coffee drinker pouring salt rather than sugar into her drink,

XII Kiani et al. (2014) also note the lack of the divergence signature in their data, but because their
stimuli have variable duration, optimality is more complicated to characterize (Drugowitsch et al.,
2014a), and the explanation we offer here may not apply.
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a child reaching for his parent’s glass of whiskey instead of his glass of apple juice, or a doctor

classifying a malignant tumor as benign (Augsburger et al., 2008). In all three examples,

stimuli from opposing categories may be visually identical, even under zero measurement

noise. For more naturalistic experiments with overlapping categories, qualitative signatures

will be unusable if their derivations assume non-overlapping categories.

Given our demonstration that proposed qualitative signatures of confidence have limited

applicability, what is the way forward? One option available to confidence researchers is to

discover more signatures, being careful to find the specific conditions under which they are

expected. Confidence experimentalists should then make sure to look for such signatures only

when their tasks satisfy the specified conditions (e.g., stimulus distribution type, noise level).

However, for researchers interested in testing the BCH, we do not necessarily advocate for

this course of action because, even when applied to relevant experiments, the presence or

absence of qualitative signatures provides an uncertain amount of evidence for or against the

BCH. Testing for the presence of qualitative signatures is a weak substitute for accumulating

probabilistic evidence, something that careful (Palminteri et al., 2017) quantitative model

comparison does more objectively. Testing for signatures requires the experimenter to make

two subjective judgments. First, the experimenter must determine whether the signature

is present, a task potentially made difficult by the fact that real data is noisy. Second,

the experimenter must determine how much evidence that provides in favor of the BCH,

and whether further investigation is warranted. By contrast, model comparison provides a

principled quantity (namely, a log likelihood) in favor of the BCH over some other model

(Aitchison and Latham, 2014). Given the caveats associated with qualitative signatures, it

may be that, as a field, we have no choice but to rely on formal model comparison. Chapters 3

and 4 will use model comparison to do a quantitative test of the BCH.
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Chapter 3

Human confidence reports under
bottom-up stimulus uncertainty

3.1 Introduction

In the previous chapter, we showed that qualitative signatures are not useful indicators of

whether confidence is Bayesian, and we concluded that a formal model comparison approach

may instead be required. In this and the next chapter, we will conduct a series of binary

categorization tasks designed to probe the computational underpinnings of confidence.

Our tasks use simple visual stimuli in which the primary variable of interest is stimulus

orientation. Many confidence studies use time-varying stimuli in which subjects are able to

terminate stimulus presentation when ready to make a decision (Kiani et al., 2014; Kiani and

Shadlen, 2009; van den Berg et al., 2016). However, when stimuli have variable duration,

optimality is more complicated to characterize (Drugowitsch et al., 2014a); for this reason,

we present stimuli for a fixed, brief amount of time. Our observer models differ by how they

incorporate sensory uncertainty; therefore it is essential that we vary both the variable of

interest as well as sensory uncertainty. In this chapter, we induce sensory uncertainty by

manipulating external stimulus factors, specifically stimulus contrast or ellipse elongation.
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After conducting our experiments, we compare the fits of Bayesian models to those of

a variety of alternative models, something that is rarely done but very important for the

epistemological standing of Bayesian claims (Bowers and Davis, 2012; Jones and Love, 2011).

At first glance, it seems obvious that sensory uncertainty is relevant to the computation

of confidence. However, this is by no means a given; in fact, a prominent proposal is that

confidence is based on the distance between the measurement and the decision boundary,

without any role for sensory uncertainty (Kepecs et al., 2008; Komura et al., 2013; Rahnev

et al., 2011). Therefore, we test a model (Fixed) in which the response is a function of the

measurement alone (equivalent to a maximum likelihood estimate of the stimulus orientation),

and not of the uncertainty of that measurement (Figure 3.2, second column).

We also test heuristic models in which the subject uses their knowledge of their sensory

uncertainty but does not compute a posterior distribution over category. We have previously

classified such models as probabilistic non-Bayesian (Ma, 2012). We find that the BCH

qualitatively describes human behavior but that quantitatively, even the most flexible Bayesian

model is outperformed by models that take sensory uncertainty into account in a non-Bayesian

way.

3.2 Methods

3.2.1 Experiment 1

During each session, each subject completed two orientation categorization tasks, Tasks A

and B. On each trial, a category C was selected randomly (both categories were equally

probable), and a stimulus s was drawn from the corresponding stimulus distribution and

displayed. The subject categorized the stimulus and simultaneously reported their confidence

on a 4-point scale, with a single button press (Figure 3.1a). Using a single button press for
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choice and confidence prevented post-choice influences on the confidence judgment (Navajas

et al., 2016) and emphasized that confidence should reflect the observer’s perception rather

than a preceding motor response. The categories were defined by normal distributions on

orientation, which differed by task (Figure 3.1b). In Task A, the distributions had different

means (±µC) and the same standard deviation (σC); leftward-tilting stimuli were more likely

to be from category 1. Variants of Task A are common in decision-making studies (Britten

et al., 1992). In Task B, the distributions had the same mean (0◦) and different standard

deviations (σ1, σ2); stimuli around the horizontal were more likely to be from category 1.

Variants of Task B are less common (Liu et al., 1995; Qamar et al., 2013; Sanborn et al.,

2010) but have some properties of perceptual organization tasks; for example, a subject may

have to detect when a stimulus belongs to a narrow category (e.g., in which two line segments

are collinear) that is embedded in a a broader category (e.g., in which two line segments are

unrelated).

Subjects were highly trained on the categories; during training, we only used highest-

reliability stimuli, and we provided trial-to-trial category correctness feedback. Subjects

were then tested with 6 different reliability levels, which were chosen randomly on each trial.

During testing, correctness feedback was withheld to avoid the possibility that confidence

simply reflects a learned mapping between stimuli and the probability of being correct,

something that no other confidence studies have done (Körding and Wolpert, 2004; Maloney

and Mamassian, 2009; Qamar et al., 2013).

Because we are interested in subjects’ intrinsic computation of confidence, we did not

instruct or incentivize them to assign probability ranges to each button (e.g., by using a

scoring rule (Brier, 1950; Gneiting and Raftery, 2007; Massoni et al., 2014)). If we had, we

would have essentially been training subjects to use a specific model of confidence.

To ensure that our results were independent of stimulus type, we used two kinds of
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Figure 3.1 Task design. (a) Schematic of a test block trial. After stimulus offset, subjects reported
category and confidence level with a single button press. (b) Stimulus distributions for Tasks A and B.
(c) Examples of low and high reliability stimuli. Six (out of eleven) subjects saw drifting Gabors, and
five subjects saw ellipses. (d) Example measurement distributions at different reliability levels. In all
models (except Linear Neural), the measurement is assumed to be drawn from a Gaussian distribution
centered on the true stimulus, with s.d. dependent on reliability.

stimuli. Some subjects saw oriented drifting Gabors; for these subjects, stimulus reliability

was manipulated through contrast. Other subjects saw oriented ellipses; for these subjects,

stimulus reliability was manipulated through ellipse elongation (Figure 3.1c). We found no

major differences in model rankings between Gabor and ellipse subjects, therefore we will

make no distinctions between the groups.

For modeling purposes, we assume that the observer’s internal representation of the
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stimulus is a noisy measurement x, drawn from a Gaussian distribution with mean s and s.d.

σ (Figure 2.1, Figure 3.1d). In the model, σ (i.e., uncertainty) is a fitted function of stimulus

reliability.

3.2.1.1 Subjects

11 subjects (2 male), aged 20–42, participated in the experiment. Subjects received $10 per

40-60 minute session, plus a completion bonus of $15. The experiments were approved by

the University Committee on Activities Involving Human Subjects of New York University.

Informed consent was given by each subject before the experiment. All subjects were naïve

to the purpose of the experiment. No subjects were fellow scientists.

3.2.1.2 Apparatus and stimuli

Apparatus. Subjects were seated in a dark room, at a viewing distance of 32 cm from the

screen, with their chin in a chinrest. Stimuli were presented on a gamma-corrected 60 Hz

9.7-inch 2048-by-1536 display. The display (LG LP097QX1-SPA2) was the same as that used

in the 2013 iPad Air (Apple); we chose it for its high pixel density (264 pixels/inch). The

display was connected to a Windows desktop PC using the Psychophysics Toolbox extensions

(Brainard, 1997; Pelli, 1997) for MATLAB (Mathworks).

Stimuli. The background was mid-level gray (199 cd/m2). The stimulus was either a

drifting Gabor (Subjects 3, 6, 8, 9, 10, and 11) or an ellipse (Subjects 1, 2, 4, 5, and 7). The

Gabor had a peak luminance of 398 cd/m2 at 100% contrast, a spatial frequency of 0.5 cycles

per degrees of visual angle (dva), a speed of 6 cycles per second, a Gaussian envelope with

a standard deviation of 1.2 dva, and a randomized starting phase. Each ellipse had a total

area of 2.4 dva2, and was black (0.01 cd/m2). We varied the contrast of the Gabor and the

elongation (eccentricity) of the ellipse (Section 3.2.1.3).
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Categories. In Task A, stimulus orientations were drawn from Gaussian distributions

with means µ1 = −4◦ (category 1) and µ2 = 4◦ (category 2) and standard deviations

σ1 = σ2 = 5◦. In Task B, stimulus orientations were drawn from Gaussian distributions with

means µ1 = µ2 = 0◦, and standard deviations σ1 = 3◦ (category 1) and σ2 = 12◦ (category 2)

(Figure 3.1b). We chose these category means and standard deviations such that the accuracy

of an optimal observer would be around 80%.

3.2.1.3 Procedure

Each subject completed 5 sessions. Each session consisted of two parts; the subject did Task

A in the first part, followed by Task B in the second part, or vice versa (chosen randomly

each session). Each part started with instruction and was followed by alternating blocks of

96 category training trials and 144 testing trials, for a total of three blocks of each type, with

a block of 24 confidence training trials immediately after the first category training block.

Combining all sessions and both tasks, each subject completed 2880 category training trials,

240 confidence training trials, and 4320 testing trials; we did not analyze category training or

confidence training trials.

Instruction. At the start of each part of a session, subjects were shown 30 (72 in the

first session) exemplar stimuli from each category. Additionally, we provided them with a

printed graphic similar to Figure 3.1b, and explained how the stimuli were generated from

distributions. We answered any questions.

Category training. To ensure that subjects knew the stimulus distributions well, we gave

them extensive category training. Each trial proceeded as follows (Figure 3.1a): Subjects

fixated on a central cross for 1 s. Category 1 or category 2 was selected with equal probability.

The stimulus orientation was drawn from the corresponding stimulus distribution (Figure 3.1b).

Gabors had 100% contrast, and ellipses had 0.95 eccentricity (elongation). The stimulus
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appeared at fixation for 300 ms, replacing the fixation cross. Subjects were asked to report

category 1 or category 2 by pressing a button with their left or right index finger, respectively.

Subjects were able to respond immediately after the offset of the stimulus, at which point

verbal correctness feedback was displayed for 1.1 s. The fixation cross then reappeared.

Confidence training. To familiarize subjects with the button mappings, they completed a

short confidence training black at the start of every task. We told subjects that in this block,

it would be harder to tell what the stimulus orientation was, there would be no correctness

feedback, and they would be reporting their confidence on each trial in addition to their

category choice. We provided them with a printed graphic similar to the buttons pictured in

Figure 3.1a, indicating that they had to press one of eight buttons to indicate both category

choice and confidence level, the latter on a 4-point scale. The confidence levels were labeled

as “very high,” “somewhat high,” “somewhat low,” and “very low.” Gabors had 0.4%, 0.8%,

1.7%, 3.3%, 6.7%, or 13.5% contrast, and ellipses had 0.15, 0.28, 0.41, 0.54, 0.67, or 0.8

eccentricity, chosen randomly with equal probability on each trial (Figure 3.1c). Stimuli were

only displayed for 50 ms. Trial-to-trial feedback consisted only of a message telling them

which category and confidence level they had reported. Other than these changes, the trial

procedure was the same as in category training.

Subjects were not instructed to use the full range of confidence reports (Sanders et al.,

2016), as that might have biased them away from reporting what felt most natural. Instead,

they were simply asked to be “as accurate as possible in reporting their confidence” on each

trial.

Testing. The trial procedure in testing blocks was the same as in confidence training

blocks, except that trial-to-trial feedback was completely withheld. At the end of each block,

subjects were required to take at least a 30 s break. During the break, they were shown the

percentage of trials that they had correctly categorized. Subjects were also shown a list of
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the top 10 block scores (across all subjects, indicated by initials) for the task they had just

done. This was intended to motivate subjects to score highly, and to reassure them that their

scores were normal, since it is rare to score above 80% on a block.

3.2.2 Experiment 2: Separate category and confidence responses and testing

feedback

This control experiment was identical to experiment 1 except for the following modifications:

• Subjects first reported choice by pressing one of two buttons with their left hand, and
then reported confidence by pressing one of four buttons with their right hand.

• Subjects reported confidence in category training blocks, and received correctness
feedback after reporting confidence.

• There were no confidence training blocks.

• In testing blocks, subjects received correctness feedback after each trial.

• Subjects completed a total of 3240 testing trials.

• 8 subjects (0 male), aged 19–23, participated. None were participants in experiment 1,
and again, none were fellow scientists.

• Drifting Gabors were used; no subjects saw ellipses.

3.2.3 Experiment 3: Task B only

This experiment was identical to experiment 1 except for the following modifications:

• Subjects completed blocks of Task B only.

• Subjects completed a total of 3240 testing trials.

• 15 subjects (7 female), aged 19–30, participated. None were participants in experiments
1 or 2.

• Drifting Gabors were used; no subjects saw ellipses.
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3.2.4 Modeling

3.2.4.1 Measurement noise

For models (such as our core models) where the relationship between reliability (i.e., contrast

or ellipse eccentricity) and noise was parametric, we assumed a power law relationship between

reliability c and measurement noise variance σ2: σ2(c) = γ + αc−β. We have previously

(Qamar et al., 2013) used this power law relationship because it encompasses a large family of

monotonically decreasing relationships using only three parameters. The relationship is also

consistent with a form of the Naka-Rushton function (DiMattina, 2016; Naka and Rushton,

1966) commonly used to describe the mapping from reliability to neural gain g: g = γcβ

cβ+α .

The power law relationship then holds under the assumption that measurement noise variance

is inversely proportional to gain (Ma et al., 2006).

For all models except the Bayesian model with additive precision, we assumed additive

orientation-dependent noise in the form of a rectified 2-cycle sinusoid, accounting for the

finding that measurement noise is higher at non-cardinal orientations (Girshick et al., 2011).

The measurement noise s.d. comes out to

σ(c, s) =
√
γ + αc−β + ψ

∣∣∣∣sin πs90

∣∣∣∣. (3.1)

3.2.4.2 Response probability

We coded all responses as r ∈ {1, 2, . . . , 8}, with each value indicating category and confidence.

For all models except the Linear Neural model, the probability of a single trial i is equal to

the probability mass of the measurement distribution p(x | si) = N (x; si, σ2
i ) (i.e., a normal

distribution over x with mean si and variance σ2
i ) in a range corresponding to the subject’s

response ri. Because we only use a small range of orientations, we can safely approximate
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measurement noise as a normal distribution rather than a Von Mises distribution. We find

the boundaries (bri−1(σi), bri(σi)) in measurement space, as defined by the fitting model

and parameters θ, and then compute the probability mass of the measurement distribution

between the boundaries:

pm,θ(ri | si, σi) =
∫ bri

bri−1
N (x; si, σ2

i ) dx. (3.2)

For Task A, b0 = −∞◦ and b8 = ∞◦. For Task B, b0 = 0◦ and b8 = ∞◦; since the task is

symmetric around 0◦, we only use |s| in our computation of the log likelihood.

To obtain the log likelihood of the dataset, given a model with parameters θ, we compute

the sum of the log probability for every trial i, where t is the total number of trials:

log p(data | θ) =
t∑
i=1

log p(ri | θ) =
t∑
i=1

log pθ(ri | si, σi). (3.3)

3.2.4.3 Model specification

Bayesian A Bayes-optimal observer uses knowledge of the generative model to make a

decision that maximizes the probability of being correct. Here, when the measurement on a

given trial is x, this strategy amounts to choosing the category C for which the posterior

probability p(C | x) is highest. This is equivalent to reporting category 1 when the log

posterior ratio, d = log p(C=1|x)
p(C=2|x) , is positive.

In Task A, d is dA = 2xµC
σ2+σ2

C
. Therefore, the ideal observer reports category 1 when x is

positive; this is the structure of many psychophysical tasks (Green and Swets, 1966). In

Task B, however, d is dB = 1
2 log σ2+σ2

2
σ2+σ2

1
− σ2

2−σ
2
1

2(σ2+σ2
1)(σ2+σ2

2)x
2; the observer needs both x and σ

in order to make an optimal decision.

From the point of view of the observer, σ is the trial-to-trial level of sensory uncertainty
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associated with the measurement (Ma, 2010). In a minor variation of the optimal observer,

we allow for the possibility that the observer’s prior belief over category, p(C), is different

from the true value of (0.5, 0.5); this adds a constant to dA and dB.

We introduce the Bayesian confidence hypothesis (BCH), stating that confidence reports

depend on the internal representation of the stimulus (here x) only via d. In the BCH, the

observer chooses a response by comparing d to a set of category and confidence boundaries.

For example, whenever d falls within a certain range, the observer presses the “medium-low

confidence, category 2” button. The BCH is thus an extension of the choice model described

above, wherein the value of d is used to compute confidence as well as chosen category. There

is another way of thinking about this. Bayesian models assume that subjects compute d in

order to make an optimal choice. Assuming people compute d at all, are they able to use it

to report confidence as well? We refer to the Bayesian model here as simply “Bayes.” We

also tested several more constrained versions of this model.

The observer’s decision can be summarized as a mapping from a combination of a

measurement and an uncertainty level (x, σ) to a response that indicates both category and

confidence. We can visualize this mapping as in Figure 3.2, first column. It is clear that the

pattern of decision boundaries in the BCH is qualitatively very different between Task A and

Task B. In Task A, the decision boundaries are quadratic functions of uncertainty; confidence

decreases monotonically with uncertainty and increases with the distance of the measurement

from 0. In Task B, the decision boundaries are neither linear nor quadratic.

Derivation of dA and dB. The log posterior ratio d is equivalent to the log likelihood ratio

plus the log prior ratio:

d = log p(C = 1 | x)
p(C = 2 | x) = log p(x | C = 1)

p(x | C = 2) + log p(C = 1)
p(C = 2) . (3.4)
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Figure 3.2 Decision rules/mappings in four models. Each model corresponds to a different mapping
from a measurement and uncertainty level to a category and confidence response. Colors correspond to
category and confidence response, as in Figure 3.1a. Plots were generated from the mean of subject 4’s
posterior distribution over parameters. These figures should be used only as an aid for understanding the
models’ decision rules, not for closely interpreting the different fitted rules across models; interpretation
is complicated by, among other considerations, the fact that some regions have very few trials.

To get dA and dB, we need to find the task-specific expressions for p(x | C). The observer

knows that the measurement x is caused by the stimulus s, but has no knowledge of s.

Therefore, the optimal observer marginalizes over s:

p(x | C) =
∫
p(x | s)p(s | C) ds.

We substitute the expressions for the noise distribution and the stimulus distribution, and

evaluate the integral:

p(x | C) =
∫
N (s;x, σ2)N (s;µC , σ2

C) ds = N (x;µC , σ2 + σ2
C). (3.5)

Plugging the task- and category-specific µC and σC into Equation (3.5), and substituting
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the resulting expression back into Equation (3.4), we get:

dA = 2xµ1

σ2 + σ2
1

+ log p(C = 1)
p(C = 2) (3.6)

dB = 1
2 log σ

2 + σ2
2

σ2 + σ2
1
− σ2

2 − σ2
1

2(σ2 + σ2
1)(σ2 + σ2

2)x
2 + log p(C = 1)

p(C = 2) . (3.7)

The 8 possible category and confidence responses are determined by comparing the log

posterior ratio d to a set of decision boundaries k = (k0, k1, . . . , k8). k4 is equal to the log prior

ratio log p(C=1)
p(C=2) , which functions as the boundary on d between the 4 category 1 responses and

the 4 category 2 responses; k4 is the only boundary parameter in models of category choice

(and not confidence). k0 is fixed at −∞ and k8 is fixed at ∞. In all models, the observer

chooses category 1 when d is positive.

Because the decision boundaries are free parameters, our models effectively include a

large family of possible cost functions. A different cost function would be equivalent to a

rescaling of the confidence boundaries k. To see this, it is probably easiest to consider category

choice alone; there, asymmetric costs for getting either category wrong would translate into a

different value of k4, the category decision boundary (i.e., the observer’s prior over category).

For us, this boundary (like all other boundaries) is a free parameter.

The posterior probability of category 1 can be written as as p(C = 1 | x) = 1
1+exp(−d) .

Levels of strength. We formulated several levels of strength of the Bayesian model, with

weaker versions having fewer assumptions and more sets of mappings between the posterior

probability of being correct and the confidence report (Figure 3.3).

In BayesUltrastrong, k is symmetric across k4: k4+j − k4 = k4 − k4−j for j ∈ {1, 2, 3}.

Furthermore, in BayesUltrastrong, kA = kB. So BayesUltrastrong has a total of 4 free boundary

parameters: k1, k2, k3, k4. BayesUltrastrong consists of the observer determining the response

by comparing dA and dB to a single symmetric set of boundaries (Figure 3.3, left column).
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BayesStrong is identical to BayesUltrastrong except that kA is allowed to differ from kB. So

BayesStrong has a total of 8 free boundary parameters: k1A, k2A, k3A, k4A, k1B, k2B, k3B, k4B.

BayesStrong consists of the observer determining the response by comparing dA to a symmetric

set of boundaries, and dB to a different symmetric set of boundaries (Figure 3.3, middle

column).

BayesWeak is identical to BayesStrong except that symmetry is not en-

forced for kB. So BayesWeak has a total of 11 free boundary parameters:

k1A, k2A, k3A, k4A, k1B, k2B, k3B, k4B, k5B, k6B, k7B. BayesWeak consists of the observer

comparing dA to a symmetric set of boundaries, and dB to a different non-symmetric set of

boundaries (Figure 3.3, right column).
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Figure 3.3 Distributions of posterior probabilities of being correct, with confidence criteria for Bayesian
models with three different levels of strength. Solid lines represent the distributions of posterior
probabilities for each category and task in the absence of measurement noise. Dashed lines represent
confidence criteria, generated from the mean of subject 4’s posterior distribution over parameters. Each
model has a different number of sets of mappings between posterior probability and confidence report. In
BayesUltrastrong, there is one set of mappings. In BayesStrong, there is one set for Task A, and another for
Task B. In BayesWeak, as in the non-Bayesian models, there is one set for Task A, and one set for each
reported category in Task B. Plots were generated from the mean of subject 4’s posterior distribution
over parameters as in Figure 3.2.
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Decision boundaries. In the Bayesian models without d noise, we translate boundary

parameters k to measurement boundaries b corresponding to fitted noise levels σ. To do this,

we use the parameters k as the left-hand side of Equations (3.6) and (3.7) and solve for x at

the fitted levels of σ. These values were used as the measurement boundaries b(σ).

In the Bayesian models with d noise, we assume that, for each trial, there is an added

Gaussian noise term on d, ηd ∼ p(ηd), where p(ηd) = N (0, σ2
d), and σd is a free parameter.

We pre-computed 101 evenly spaced draws of ηd and their corresponding probability densities

p(ηd). We used Equations (3.6) and (3.7) to compute a lookup table containing the values of

d as a function of x, σ, and ηd. We then used linear interpolation to find sets of measurement

boundaries b(σ) corresponding to each draw of ηd (Acerbi et al., 2012). We then computed 101

response probabilities for each trial (Section 3.2.4.2), one for each draw of ηd, and computed

the weighted average according to p(ηd).

Probability correct with additive precision We tested a model in which the decision

variable was a weighted mixture of precision (equivalent in this case to the Fisher information

of the measurement variable x) and the perceived probability of being correct (Navajas et al.,

2017). In this model, the decision variable is ω
σ2 + 1

1+exp(−|d|) , where ω is a free parameter.

To find the measurement boundaries b(σ), we substituted Equations (3.6) and (3.7) for d,

and set the whole value equal to parameters k, solving for x at the fitted levels of σ. This

model can be considered a hybrid Bayesian-heuristic model. Like BayesUltrastrong, it has 4

free boundary parameters. Although the model is a hybrid Bayesian-heuristic model, not a

strictly Bayesian one, we refer to it as BayesUltrastrong + precision in Figure 3.13.

Fixed In Fixed, the observer compares the measurement to a set of boundaries that are not

dependent on σ (Figure 3.2, second column). We fit free parameters k, and use measurement

boundaries br = kr.
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Lin and Quad We derived two additional probabilistic non-Bayesian models, Lin and Quad,

from the observation that the Bayesian decision criteria are an approximately linear function

of uncertainty in some measurement regimes and approximately quadratic in others. These

models are able to produce approximately Bayesian behavior without actually performing

any computation of the posterior. In Lin and Quad, subjects base their response on a linear

or a quadratic function of x and σ, respectively. A comparison of the Lin and Quad columns

to the Bayes column in Figure 3.2 demonstrates that Lin and Quad can approximate the

Bayesian mapping from (x, σ) to response despite not being based on the Bayesian decision

variable.

In Lin and Quad, the observer compares the measurement to a set of boundaries that are

linear or quadratic functions of σ. We fit free parameters k and m, and use measurement

boundaries br(σ) = kr +mrσ (Lin) or br(σ) = kr +mrσ
2 (Quad).

Lin and Quad are each a supermodel of Fixed. In other words, there are parameter settings

where Lin and Quad are equivalent to Fixed (although our model comparison methods ensure

that the models are still distinguishable, see Section 3.3.5). Additionally, in Task A, Quad is

a supermodel of the Bayesian models without d noise.

Orientation Estimation In Orientation Estimation, the observer uses the mixture of the

two stimulus distributions as a prior distribution to compute a maximum a posteriori estimate

of the stimulus:

ŝ = argmax
s

p(s | x)

= argmax
s

p(x | s)p(s)

= argmax
s

[
N (s;x, σ2)(p(s | C = 1) + p(s | C = 2))

]
. (3.8)
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The observer then compares ŝ to a set of boundaries k to determine category and confidence

response.

Decision boundaries. To find the decision boundaries in measurement space, we used

gmm1max_n2_fast from Luigi Acerbi’s gmm1 (github.com/lacerbi/gmm1) 1-D Gaussian

mixture model toolbox to solve Equation (3.8), computing a lookup table containing the value

of ŝ as a function of x and σ (Acerbi et al., 2014). We then found, using linear interpolation,

the values of x corresponding to σ and the free parameters k. These values were used as the

measurement boundaries b(σ).

Linear Neural In Linear Neural, subjects base their response on a linear function of the

output of a hypothetical population of neurons.

In this section, r refers to neural activity, not button responses. This model is different

from all other models in that the generative model does not include measurement x. The

model can be derived as follows.

All neurons have Gaussian tuning curves with variance σ2
TC and gain g = 1

σ2 . Tuning

curve means are contained in the vector of preferred stimuli s̃. The number of spikes in

the population is r ∼ Poisson(gN (s; s̃, σ2
TC)). Neural weights are a linear function of the

preferred stimuli: w = as̃.

On each trial, we get some quantity that is a weighted sum of each neuron’s activity,

z = w · r. E [z | s] = w · E [r | s] = ag
∑
j s̃j exp

(
− (s−s̃j)2

2σ2
TC

)
.

Rather than sum over all neurons, we assume an infinite number of neurons uniformly

spanning all possible preferred stimuli s̃. This allows us to replace the sum with an integral.

The expected value of z is ag
∫
s̃ exp

(
− (s−s̃j)2

2σ2
TC

)
ds̃ = ags

√
2πσ2

TC. The variance of z is∑
j w

2
jfj(s) = ag

∫
s̃2 exp

(
− (s−s̃)2

2σ2
TC

)
ds̃ = ag

√
2πσ2

TC(σ2
TC + s2).

Now that we have the mean and variance of z, we assume that z is normally distributed.
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This is equivalent to assuming that there are a high number of spikes, because the Poisson

distribution approximates the normal distribution as the rate parameter becomes high. To

compute response probability, we fit neural activity boundaries k, and replace Equation (3.2)

with

pθ(ri | si, σi) =
∫ kri

kri−1
N (z; agsi

√
2πσ2

TC, ag
√

2πσ2
TC(σ2

TC + s2
i )) dz.

3.2.4.4 Lapse rates

In confidence and category models, we fit three different types of lapse rate. On each trial,

there is some fitted probability of:

• A “full lapse” in which the category report is random, and confidence report is chosen
from a distribution over the four levels defined by λ1, the probability of a “very low
confidence” response, and λ4, the probability of a “very high confidence” response, with
linear interpolation for the two intermediate levels.

• A “confidence lapse” λconfidence in which the category report is chosen normally, but the
confidence report is chosen from a uniform distribution over the four levels.

• A “repeat lapse” λrepeat in which the category and confidence response is simply repeated
from the previous trial.

In category choice models, we fit a standard category lapse rate λ, as well as the above

“repeat lapse” λrepeat.

3.2.4.5 Parameterization

Because of tradeoffs when directly fitting parameters γ, α, β, we re-parameterized Equa-

tion (3.1) as

σ(c, s) =

√√√√σ2
L + (σ2

L − σ2
H)(c−β − c−βL )

c−βL − c
−β
H

+ ψ
∣∣∣∣sin πs90

∣∣∣∣,
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where cL and cH were the values of the lowest and highest reliabilities used. This way, σL and

σH were free parameters that determined the s.d. of the measurement distributions for the

lowest and highest reliabilities, and β was a free parameter determining the curvature of the

function between the two reliabilities. For models where the relationship between reliability

and noise was non-parametric, the first term in Equation (3.1) was replaced with free s.d.

parameters (σrel. 1, . . . , σrel. 6) corresponding to each of the six reliability levels.

For models where subjects had incorrect knowledge about their measurement noise, we

fit two sets of uncertainty-related parameters. One set was for the generative noise (used in

Equation (3.2)), and the other set was for the subject’s believed noise (used in Equations (3.6)

to (3.8)).

All parameters that defined the width of a distribution (e.g., σL, σH, σd, σrel. 1, . . . ) were

sampled in log-space and exponentiated during the computation of the log likelihood.

3.2.4.6 Model fitting

Rather than find a maximum likelihood estimate of the parameters, we sampled from the

posterior distribution over parameters, p(θ | data); this has the advantage of maintaining a

measure of uncertainty about the parameters, which can be used both for model comparison

and for plotting model fits. We used the log posterior

log p(θ | data) = log p(data | θ) + log p(θ) + constant, (3.9)

where log p(data | θ) is given in Equation (3.3). We assumed a factorized prior over each

parameter j:

log p(θ) =
n∑
j=1

log p(θj),
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where j is the parameter index and n is the number of parameters. We took uniform (or, for

parameters that were standard deviations, log-uniform) priors over reasonable, sufficiently

large ranges (Acerbi et al., 2014), which we chose before fitting any models.

We sampled from the probability distribution using a Markov Chain Monte Carlo (MCMC)

method, slice sampling (Neal, 2003). For each model and dataset combination, we ran between

4 and 7 parallel chains with random starting points. For each chain, we took 40,000 to 600,000

total samples (depending on model computational time) from the posterior distribution over

parameters. We discarded the first third of the samples and kept 6,667 of the remaining

samples, evenly spaced to reduce autocorrelation. All samples with log posteriors more than

40 below the maximum log posterior were discarded. Marginal probability distributions of

the sample log likelihoods were visually checked for convergence across chains. In total we

had 842 model and dataset combinations, with a median of 26,668 kept samples (IQR =

13,334).

After sampling, we conducted a visual check to confirm that our parameter ranges were

sufficiently large. For each model, we plotted the posterior distribution over parameter

values for each subject; an example plot is shown in Figure 3.4. Visual checks of these plots

confirmed that the distributions are unimodal and roughly Gaussian. Visual checks also

confirmed that the parameter distributions are well-contained within the chosen parameter

ranges, except for the distributions of:

• Lapse rate parameters, which tend to mass around 0, where they are necessarily
bounded.

• Log noise parameters, which have a large negative range where they are effectively at
zero noise.

• Upper confidence boundary parameters, which become small for subjects who frequently
report “high confidence,” or large for subjects who frequently do.
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Figure 3.4 Posterior distributions over parameter values for an example model. Each subplot represents
a parameter of the model. Each colored histogram represents the sampled posterior distribution for a
parameter and a subject in experiment 1, with colors consistent for each subject. The limits of the x-axis
indicates the allowable range for each parameter. Black triangles indicate the overall mean parameter
value.

3.2.4.7 Model comparison

Model groupings We used 8 groupings of model-subject combinations where it made sense

to consider the models as being on equal footing for the purpose of model comparison. The

model-subject combinations were grouped by: experiment (which corresponded to subject

population), data type (category response only vs. category and confidence response), task

type (Task A, B, or both fit jointly). The 8 groupings correspond to Figures 3.13 to 3.20

and Tables 3.1 to 3.7.

Metric choice A more complex model is likely to fit a dataset better than a simpler

model, even if only by chance. Since we are interested in our models’ predictive accuracy

for unobserved data, it is important to choose a metric for model comparison that takes the

complexity of the model into account, avoiding the problem of overfitting. Roughly speaking,

there are two ways to compare models: information criteria and cross-validation.
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Most information criteria (such as AIC, BIC, and AICc) are based on a point estimate

for θ, typically θMLE, the θ that maximizes the log likelihood of the dataset (Equation (3.3)).

For instance, AIC adds a correction for the number of parameters n to the log likelihood of

the dataset: AIC = −2∑t
i=1 log p(ri | θMLE) + 2n.

WAIC is a more Bayesian approach to information criteria that adds a correction for the

effective number of parameters (Gelman et al., 2013). Because WAIC is based on samples

from the full posterior of θ (Equation (3.9), typically sampled via MCMC), it takes into

account the model’s uncertainty landscape.

Although information criteria are computationally convenient, they are based on asymp-

totic results and assumptions about the data that may not always hold (Gelman et al., 2013).

An alternative way to estimate predictive accuracy for unobserved data is to cross-validate,

fitting the model to training data and evaluating the fit on held out data. Leave-one-out

cross-validation is the most thorough way to cross-validate, but is very computationally

intensive; it requires that you fit your model t times, where t is the number of trials. Here we

use a method (PSIS-LOO, referred to here simply as LOO) proposed by Vehtari et al. (2015)

for approximating leave-one-out cross-validation that, like WAIC, uses samples from the full

posterior of θ:

LOO =
t∑
i=1

log
∑
uwi,up(ri | θu)∑

uwi,u
,

where θu is the u-th sampled set of parameters, and wi,u is the importance weight of trial

i for sample u. Pareto smoothed importance sampling provides an accurate and reliable

estimate of the weights. LOO is currently the most accurate approximation of leave-one-out

cross-validation (Acerbi et al., 2017). Conveniently, it has a natural diagnostic that allows

the user to know when the metric may be inaccurate (Vehtari et al., 2015); we used that

diagnostic and confirmed that our use of the metric is justified.

54



Metric aggregation Summed LOO differences. In all figures where we present model

comparison results (e.g., Figure 3.10, right column), we aggregate LOO scores by the following

procedure. Choose a reference model (usually the one with the lowest mean LOO score

across subjects). Subtract all LOO scores from the corresponding subject’s score for the

reference model; this converts all scores to a LOO “difference from reference” score, with

higher scores being worse. Repeat the following standard bootstrap procedure 10,000 times:

Choose randomly, with replacement, a group of datasets equal to the total number of unique

datasets, and take the sum over subjects of their “difference from reference” scores for each

model. Plots indicate the median and 95% CI of these bootstrapped summed “difference

from reference” scores. This approach implicitly assumes that all data was generated from

the same model.

To confirm that our sample size was large enough to trust our bootstrapped confidence

intervals, we bootstrapped our bootstrapping procedure to see how the confidence intervals

were affected by the number of subjects N . For an example pair of models that we might

be interested in comparing, and took the 11 LOO differences between the models, one for

each subject in experiment 1. For each N between 2 and 11, we took 50 subsamples of our

subject LOO differences with replacement; this is akin to running the experiment 50 times

for each N . For each subsample, we conducted the above bootstrap procedure, which give us

a median and 95% CI on the mean of differences. We then plot the mean of these values,

with error bars indicating ±1 s.d., at each N (Figure 3.5a). A visual check indicates that the

confidence interval appears to converge at about N = 9. This indicates that our bootstrapped

confidence intervals are trustworthy.

Group level Bayesian model selection. We also used LOO scores to compute two metrics

that allow for model heterogeneity across the group. The first metric was “protected

exceedance probability,” the posterior probability that one model occurs more frequently than
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Figure 3.5 Example analysis of a bootstrapped
confidence interval. (a) Uncertainty estimates
for bootstrapped confidence intervals, as a func-
tion of the number of subjects included. Blue
line represents the median bootstrapped mean
of LOO differences, and black lines indicate the
lower and upper bounds of the 95% CI. Error
bars represent ±1 s.d. (b) For comparison to a,
the standard style of plot used to show model
comparison results (e.g., Figure 3.9).

any other model in the set (Rigoux et al., 2014), above and beyond chance (e.g., Figure 3.13b).

The second was the expected posterior probability that a model generated the data of a

randomly chosen dataset (Stephan et al., 2009) (e.g., Figure 3.13c). The latter metric assumes

a uniform prior over models, which is a function of the total number of datasets. We used

the SPM12 (www.fil.ion.ucl.ac.uk/spm) software package to compute these metrics.

In all but one of the 8 model groupings, all three methods of metric aggregation identify

the same overall best model. For example, in Figure 3.13, one model (Quad + non-param.

σ) has the lowest summed LOO differences, the highest protected exceedance probability,

and the highest expected posterior probability.

3.2.4.8 Visualization of model fits

Model fits were plotted by bootstrapping synthetic group datasets with the following procedure:

For each task, model, and subject, we generated 20 synthetic datasets, each using a different

set of parameters sampled, without replacement, from the posterior distribution of parameters.

Each synthetic dataset was generated using the same stimuli as the ones presented to the

real subject. We randomly selected a number of synthetic datasets equal to the number of

subjects to create a synthetic group dataset. For each synthetic group dataset, we computed

the mean output (e.g., button press, confidence, performance) per bin. We then repeated
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this 1,000 times and computed the mean and standard deviation of the mean output per

bin across all 1,000 synthetic group datasets, which we then plotted as the shaded regions.

Therefore, shaded regions represent the mean ±1 s.e.m. of synthetic group datasets.

For plots with orientation on the horizontal axis (e.g., Figure 3.8j–o), stimulus orientation

was binned according to quantiles of the task-dependent stimulus distributions so that each

point consisted of roughly the same number of trials. For each task, we took the overall

stimulus distribution p(s) = 1
2 (p(s | C = 1) + p(s | C = 2)) and found bin edges such that

the probability mass of p(s) was the same in each bin. We then plotted the binned data with

linear spacing on the horizontal axis.

3.3 Results

Since our models do not include any learning effects, we wanted to ensure that task performance

was stable. For all tasks and experiments, we found no evidence that performance changed

significantly as a function of the number of trials. For each experiment and task (the 5 lines

in Figure 3.6), we fit a logistic regression to the binary correctness data for each subject,

obtaining a set of slope coefficients. We then used a t-test to determine whether these sets

of coefficients differed significantly from zero. In no group did the slopes differ significantly

from zero; across all 5 groupings the minimum p-value was 0.077 (Task A, experiment 2),

which would not be significant even before correcting for multiple comparisons.

3.3.1 Descriptive statistics (experiment 1)

Each trial consists of the experimentally determined orientation and reliability level and the

subject’s category and confidence response (an integer between 1 and 8). This is a very rich

data set. Briefly, we find the following effects: performance and confidence increase as a

function of reliability (Figure 3.8a,b,h,i), and high-confidence reports are less frequent than
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Figure 3.6 Performance as a func-
tion of number of trials, for both
tasks and for all experiments. Per-
formance was computed as a moving
average over test trials (200 trials
wide). Shaded regions represent ±1
s.e.m. over subjects. Performance
did not change significantly over the
course of each experiment.

low-confidence reports (Figure 3.8e,f). Note Figure 3.8c,d especially; this is the projection

of the data that we will use to demonstrate model fits for the rest of this chapter. We use

this projection because the vertical axis (mean button press) most closely approximates the

form of the raw data. Additionally, because our models are differentiated by how they use

uncertainty, it is informative to plot how response changes as a function of reliability, in

addition to category and task.

The following statistical differences were assessed using repeated-measures ANOVA.

In Task A, there was a significant effect of true category on category

choice (F1,10 = 285, p < 10−7). There was no main effect of reliability, which took 6 lev-

els of contrast or ellipse elongation, on category choice (F5,50 = 0.27, p = 0.88). In other

words, subjects were not significantly biased to respond with a particular category at low

reliabilities. There was a significant interaction between reliability and true category, which

is to be expected (F5,50 = 59.6, p < 10−15) (Figure 3.8a).

In Task B, there was again a significant effect of true category on cat-

egory choice (F1,10 = 78.3, p < 10−5). There was no main effect of reliabil-

ity (F5,50 = 2.93, p = 0.051). There was again a significant interaction between reliability and

true category (F5,50 = 28, p < 10−12) (Figure 3.8b).

In Task A, there was a significant effect of true category on response (F1,10 = 136, p < 10−6).

There was no main effect of reliability (F5,50 = 0.61, p = 0.642). There was a significant

58



interaction between reliability and true category (F5,50 = 58.7, p < 10−13) (Figure 3.8c).

In Task B, there was a significant effect of true category on re-

sponse (F1,10 = 54.2, p < 10−6). There was a significant effect of reliabil-

ity (F5,50 = 4.84, p = 0.0128). There was a significant interaction between reliability

and true category (F5,50 = 29.2, p < 10−8) (Figure 3.8d).

In Task A, there was a main effect of confidence on the proportion of re-

ports (F3,30 = 7.75, p < 10−3); low-confidence reports were more frequent than high-confidence

reports. There was no significant effect of true category (F1,10 = 0.784, p = 0.397) and no in-

teraction between confidence and category on proportion of responses (F3,30 = 1.45, p = 0.25)

(Figure 3.8e).

In Task B, there was a main effect of confidence on the proportion

of reports (F3,30 = 4.36, p = 0.012). There was no significant effect of cate-

gory (F1,10 = 0.22, p = 0.64), although there was an interaction between confidence

and category (F3,30 = 8.37, p = 0.003). This is likely because for task B, category 2 has a

higher proportion of “easy” stimuli (Figure 3.8f).

In both tasks, reported confidence had a significant effect on perfor-

mance (F3,30 = 36.9, p < 10−3). Task also had a significant effect on perfor-

mance (F1,10 = 20.1, p = 0.001); although we chose the category parameters such

that the performance of the optimal observer is matched, subjects were significantly better

at Task A. There was no interaction between task and confidence (F3,30 = 0.878, p = 0.436)

(Figure 3.8g).

Figure 3.8l,m shows psychometric choice curves for both tasks, at all 6 levels of reliability.

Each point represents roughly the same number of trials.

Figure 3.8n,o shows a similar set of psychometric curves. These curves differ from

Figure 3.8l,m in that they represent the mean button press rather than mean category choice.
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In Task A (Figure 3.8l,n), mean category choice and mean button press depend monoton-

ically on orientation, with a slope that increases with reliability. In Task B (Figure 3.8m,o),

the mean category choice and mean button press tends towards category 1 when stimulus

orientation is near horizontal, and tends towards category 2 when orientation is strongly

tilted; this reflects the stimulus distributions.

Reaction times did not vary with stimulus characteristics or with response, suggesting

that drift-diffusion models would not provide more explanatory power for our dataset than

the static models that we use.
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Figure 3.7 Reaction times are constant as a function of: reliability (first column); reliability and true
category (second column); orientation and reliability (second column); button press (fourth column).

3.3.2 Model comparison

We used Markov Chain Monte Carlo (MCMC) sampling to fit models to raw individual-subject

data. To account for overfitting, we compared models using leave-one-out cross-validated

log likelihood scores (LOO) computed with the full posteriors obtained through MCMC

(Vehtari et al., 2015). A model recovery analysis ensured that our models are meaningfully
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(h,i) Mean confidence as a function of stimulus reliability and correctness. (j,k) Mean confidence as a
function of stimulus orientation and reliability. (l,m) Proportion “category 1” reports as a function of
stimulus orientation and reliability. (n,o) Mean button press as a function of stimulus orientation and
reliability. (c,d,n,o) Vertical axis label colors correspond to button presses, as in Figure 3.1a. (l–o) For
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distinguishable (Figure 3.26). Unless otherwise noted, models were fit jointly to Task A and

B category and confidence responses.
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Use of sensory uncertainty. We first compared Bayes to the Fixed model, in which

the observer does not take trial-to-trial sensory uncertainty into account (Figure 3.9). Fixed

provides a poor fit to the data, indicating that observers use not only a point estimate of their

measurement, but also their uncertainty about that measurement. Bayes outperforms Fixed

by a summed LOO difference (median and 95% CI of bootstrapped sums across subjects) of

2265 [498, 4253]. For the rest of this chapter, we will report model comparison results using

this format (Section 3.2.4.7).
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Figure 3.9 Model fits and model comparison for models Fixed and Bayes. Bayes provides a better fit,
but both models have large deviations from the data. Left and middle columns: model fits to mean
button press as a function of reliability, true category, and task. Error bars represent ±1 s.e.m. across 11
subjects. Shaded regions represent ±1 s.e.m. on model fits, with each model on a separate row. Right
column: LOO model comparison. Bars represent individual subject LOO scores for Bayes, relative to
Fixed. Negative (leftward) values indicate that, for that subject, Bayes had a higher (better) LOO score
than Fixed. Blue lines and shaded regions represent, respectively, medians and 95% CI of bootstrapped
mean LOO differences across subjects. These values are equal to the summed LOO differences reported
in the text divided by the number of subjects.

Although Bayes fits better than Fixed, it still shows systematic deviations from the data,

especially at high reliabilities. (Because we fit our models to all of the raw data and because

boundary parameters are shared across all reliability levels, the fit to high-reliability trials is

constrained by the fit to low-reliability trials.)
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Noisy log posterior ratio. To see if we could improve Bayes’s fit, we tried a version

that included decision noise, i.e. noise on the log posterior ratio d. We assumed that this noise

takes the form of additive zero-mean Gaussian noise with s.d. σd. This is almost equivalent to

the probability of a response being a logistic (softmax) function of d (Keshvari et al., 2012).

Adding d noise improves the Bayesian model fit by 804 [510, 1134].

For the rest of the reported fits to behavior, we will only consider this version of Bayes

with d noise, and will refer to this model as Bayes-dN. We will refer to Bayes-dN, Fixed,

Orientation Estimation, Linear Neural, Lin, and Quad, when fitted jointly to category and

confidence data from Tasks A and B, as our core models.

Heuristic models. Orientation Estimation performs worse than Bayes-dN by 2041 [385,

3623] (Figure 3.10, second row). The intuition for one way that this model fails is as follows:

at low levels of reliability, the MAP estimate is heavily influenced by the prior and tends to

be very close to the prior mean (0◦). This explains why, in Task B, there is a bias towards

reporting “high confidence, category 1” at low reliability. Linear Neural performs about as

well as Bayes-dN, with summed LOO differences of 1188 [-588, 2704], and the fits to the

summary statistics are qualitatively poor (Figure 3.10, third row).

Finally, Lin and Quad outperform Bayes-dN by 1398 [571, 2644] and 1667 [858, 2698],

respectively. Both models provide qualitatively better fits, especially at high reliabilities

(compare Figure 3.10, first row, to Figure 3.10, fourth and fifth rows), and strongly tilted

orientations (compare Figure 3.21n,o to Figure 3.25n,o and Figure 3.8n,o).

We summarize the performance of our core models in Figure 3.11. Noting that a LOO

difference of more than 5 is considered to be very strong evidence (Kass and Raftery, 1995),

the heuristic models Lin and Quad perform much better than Bayes-dN. Furthermore, we

can decisively rule out Fixed. We will now describe variants of our core models.

Non-parametric relationship between reliability and σ. One potential criticism
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Figure 3.10 Model fits and model comparison for Bayes-dN and heuristic models. In both tasks,
Bayes-dN fails to describe the data at high reliabilities; Lin and Quad provides a good fit at most
reliabilities. Left and middle columns: as in Figure 3.9. Right column: bars represent individual subject
LOO scores for each model, relative to Bayes-dN. Negative (leftward) values indicate that, for that
subject, the model in the corresponding row had a higher (better) LOO score than Bayes-dN. Blue lines
and shaded regions: as in Figure 3.9.

of our fitting procedure is that we assumed a parameterized relationship between reliability

and σ. To see if our results were dependent on that assumption, we modified the models such

that σ was non-parametric (i.e., there was a free parameter for σ at each level of reliability).
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Figure 3.11 Comparison of core models, experiment
1. Models were fit jointly to Task A and B category
and confidence responses. Blue lines and shaded
regions represent, respectively, medians and 95%
CI of bootstrapped summed LOO differences across
subjects. LOO differences for these and other models
are shown in Figure 3.13a.

With this feature added to our core models, Quad still fits better than Bayes-dN by 1676

[839, 2730] and it fits better than Fixed by 6097 [4323, 7901]. This feature improved Quad’s

performance by 325 [141, 535]. For the rest of this paper, we will only report the fits of

Bayes-dN, the best-fitting non-Bayesian model, and Fixed. See supplementary figures and

tables for all other model fits.

Incorrect assumptions about the generative model. Suboptimal behavior can be

produced by optimal inference using incorrect generative models, a phenomenon known as

“model mismatch” (Acerbi et al., 2014; Beck et al., 2012; Orhan and Jacobs, 2014). Up to

now, Bayes-dN has assumed that observers have accurate knowledge of the parameters of the

generative model. To test whether this assumption prevents Bayes-dN from fitting the data

well, we tested a series of Bayesian models in which the observer has inaccurate knowledge of

the generative model.

Bayes-dN assumed that, because subjects were well trained, they knew the true values

of σC , σ1, and σ2, the standard deviations of the stimulus distributions. We tested a model

in which these values were free parameters, rather than fixed to the true value. We would

expect these free parameters to improve the fit of Bayes-dN in the case where subjects were

not trained enough to sufficiently learn the stimulus distributions. This feature improves

Bayes-dN’s fit by 908 [318, 1661], but it still underperforms Quad by 768 [399, 1144].

Previous models also assumed that subjects had full knowledge of their own measurement
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noise; the σ used in the computation of d was identical to the σ that determined their

measurement noise. We tested models in which we fit σmeasurement and σinference as two

independent functions of reliability (Acerbi et al., 2014). This feature improves Bayes-dN’s

fit by 1310 [580, 2175], but it still underperforms Quad by 362 [162, 602].

Levels of strength of the Bayesian model. The Bayesian model is unique in that it

is possible to formulate a principled version with relatively few boundary parameters. In

principle, it is possible that such a model could perform better than weaker, more flexible

models, if those models are overfitting. The previously described Bayesian model, which we

will temporarily refer to as BayesWeak, has many free boundary parameters, making relatively

few assumptions about the mappings between the posterior probability of being correct

and the confidence report (Figure 3.3). We formulated two stronger versions of the BCH.

The strong BCH assumes that boundary parameters are fixed across both categories. The

ultrastrong BCH additionally assumes that boundary parameters are fixed across tasks A

and B.

Most studies cannot distinguish between the strong and ultrastrong BCH because they

test subjects in only one task. Furthermore, the weak BCH is only justifiable in tasks where

the categories have different distributions of the posterior probability of being correct; the

subject may then rescale their mappings between the posterior and their confidence. Here, one

can see that Task B has this feature by observing that, in the bottom row of Figure 3.3, the

distributions of posterior probabilities are different for the two categories). Most experimental

tasks are like Task A, where the distributions are identical. We compared our previously

described, weak Bayesian model, to BayesUltrastrong-dN, BayesStrong-dN, models that make

these stronger assumptions.

BayesStrong-dN and BayesUltrastrong-dN each underperform BayesWeak-dN by 819 [441, 1369]

and 2105 [1281, 3353], respectively (Figure 3.12). For the remainder of this chapter, we
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will discard the strong and ultrastrong versions, and will refer to BayesWeak-dN simply as

Bayes-dN.
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Figure 3.12 Model fits and model comparison for three strengths of the Bayesian model, as in Figure 3.10.

Weighted average of precision and perceived probability of being correct. A

recent paper (Navajas et al., 2017) proposed that confidence is a weighted average of a

function of variance, such as 1
σ2 , and the perceived probability of being correct (incidentally,

under a non-Bayesian decision rule). We tested such a model (using a Bayesian decision rule),

which fits better than Fixed by 3059 [758, 5528] but still underperforms Lin by 3478 [2211,

5020].

Separate fits to Tasks A and B. In order to determine whether model rankings were

primarily due to differences in one of the two tasks, we fit our models to each task individually.
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In Task A, Quad fits better than Bayes-dN by 581 [278, 938], and better than Fixed by 3534

[2529, 4552] (Figure 3.14 and Table 3.1). In Task B, Quad fits better than Bayes-dN by 978

[406, 1756] and fits better than Fixed by 3234 [2099, 4390] (Figure 3.15 and Table 3.2).

Fits to category choice data only. In order to see whether our results were peculiar

to combined category and confidence responses, we fit our models to the category choices

only. Lin fits better than Bayes-dN by 595 [311, 927] and fits better than Fixed by 1690 [976,

2534] (Figure 3.16 and Table 3.3).

Fits to Task B only, with noise parameters fitted from Task A. To confirm that

the fitted values of sensory uncertainty in the probabilistic models are meaningful, we treated

Task A as an independent experiment to measure subjects’ sensory noise. The category

choice data from Task A can be used to determine the four uncertainty parameters. We fit

Fixed with a decision boundary of 0◦ (equivalent to a Bayesian choice model with no prior),

using maximum likelihood estimation. We fixed these parameters and used them to fit our

models to Task B category and confidence responses. Lin fits better than Bayes-dN by 1773

[451, 2845] and fits better than Fixed by 5016 [3090, 6727] (Figure 3.17 and Table 3.4).

Separate category and confidence responses (experiment 2). There has been

some recent debate as to whether it is more appropriate to collect choice and confidence with

a single motor response (as described above) or with separate responses (Kiani et al., 2014;

Navajas et al., 2016; Sanders et al., 2016; Wilimzig et al., 2008). Aitchison et al. (2015) found

that confidence appears more Bayesian when subjects use separate responses. To confirm

this, we ran a second experiment in which subjects chose a category by pressing one of two

buttons, then reported confidence by pressing one of four buttons. Aitchison et al. (2015)

also provided correctness feedback on every trial; in order to ensure that we could compare

our results to theirs, we also provided correctness feedback in this experiment, even though

this manipulation was not of primary interest. After fitting our core models, our results did
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not differ substantially from experiment 1: Lin fits better than Bayes-dN by 396 [186, 622]

and fits better than Fixed by 2095 [1344, 2889] (Figure 3.18 and Table 3.5).

Task B only (experiment 3). It is possible that subjects behave suboptimally when

they have to do multiple tasks in a session; in other words, perhaps one task “corrupts” the

other. To explore this possibility, we ran an an experiment in which subjects completed Task

B only. Quad fits better than Bayes-dN by 1361 [777, 2022] and fits better than Fixed by

7326 [4905, 9955] (Figure 3.19 and Table 3.6). In experiments 2 and 3, subjects only saw

drifting Gabors; we did not use ellipses.

We also fit only the choice data, and found that Lin fits about as well as Bayes-dN, with

summed LOO differences of 117 [-76, 436] and fits better than Fixed by 1084 [619, 1675]

(Figure 3.20 and Table 3.7). This approximately replicates our previously published results

(Qamar et al., 2013).

All model groupings. Below, we present model comparison results for all models,

according to the groupings described in Section 3.2.4.7 (Figures 3.13 to 3.20 and Tables 3.1

to 3.7). We also present fits for our remaining core models (Figures 3.21 to 3.25); fits for

Quad were shown in Figure 3.8.
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Quad

Lin + non-param. <
Lin
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BayesW
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BayesS-dN
Lin. Neur. + non-param. <

Lin. Neur.
BayesU-dN + free <C

Ori. Est. + free <C
BayesS

BayesU-dN + non-param. <
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Ori. Est.
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Fixed
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'(LOOQuad + non-param. <
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0 0.25 0.5 0.75 1
protected exceedance probability

b

0 0.25 0.5 0.75 1
expected posterior probability of model

c

Figure 3.13 Model comparison, experiment 1. Models were fit jointly to Task A and B category and confidence responses. (a)
Medians and 95% CI of bootstrapped sums of LOO differences, relative to the best model. Higher values indicate worse fits. (b) The
protected exceedance probability, i.e., the posterior probability that a model occurs more frequently than the others (Rigoux et al.,
2014). (c) The expected posterior probability that a model generated the data of a randomly chosen subject (Stephan et al., 2009).
Note that due to the large number of models here, we do not including a cross comparison table like Tables 3.1 to 3.7.
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Quad

Lin
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'(LOOQuad

a

0 0.25 0.5 0.75 1
protected exceedance probability

b

0 0.25 0.5 0.75 1
expected posterior probability of model
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Figure 3.14 Model comparison, experiment 1. Models were fit to Task A category and confidence responses. See Figure 3.13 caption.

12 pars. 13 pars. 12 pars. 13 pars. 16 pars.
Fixed Bayes-dN Ori. Est. Lin. Neur. Lin

13 pars.
12 pars.
13 pars.
16 pars.
16 pars.

Bayes-dN
Ori. Est.
Lin. Neur.

Lin
Quad

−2956 [−3723,−2163]
−2302 [−2881,−1705]
−3255 [−4343,−2231]
−3532 [−4353,−2651]
−3534 [−4552,−2529]

651 [425, 885]
−313 [−724, 75]

−572 [−799,−339]
−581 [−938,−278]

−972 [−1599,−412]
−1232 [−1566,−863]
−1241 [−1798,−767]

−259 [−609, 124]
−270 [−436,−117] −14 [−325, 246]

Table 3.1 Cross comparison of all models in Figure 3.14. Cells indicate medians and 95% CI of bootstrapped summed LOO score
differences. A negative median indicates that the model in the corresponding row had a higher score (better fit) than the model in
the corresponding column.
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Orientation Estimation

Fixed

0 1000 2000 3000 4000
'(LOOQuad

a

0 0.25 0.5 0.75 1
protected exceedance probability

b

0 0.25 0.5 0.75 1
expected posterior probability of model

c

Figure 3.15 Model comparison, experiment 1. Models were fit to Task B category and confidence responses. See Figure 3.13 caption.

15 pars. 13 pars. 16 pars. 15 pars. 16 pars. 22 pars.
Fixed BayesS-dN BayesW-dN Ori. Est. Lin. Neur. Lin

13 pars.
16 pars.
15 pars.
16 pars.
22 pars.
22 pars.

BayesS-dN
BayesW-dN
Ori. Est.
Lin. Neur.

Lin
Quad

−1534 [−2425,−634]
−2230 [−3239,−1307]
−1043 [−1962,−273]
−1117 [−2093,−349]
−2480 [−3323,−1645]
−3234 [−4390,−2099]

−691 [−1082,−390]
502 [−934, 1693]

421 [−1095, 1689]
−919 [−1788,−279]
−1664 [−2698,−958]

1184 [−202, 2588]
1106 [−374, 2583]
−232 [−900, 346]

−978 [−1756,−406]

−80 [−222, 62]
−1415 [−2439,−439]
−2156 [−3352,−1192]

−1326 [−2442,−337]
−2060 [−3368,−1037] −744 [−1387,−224]

Table 3.2 Cross comparison of all models in Figure 3.15. See Table 3.1 caption.
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protected exceedance probability

b
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Figure 3.16 Model comparison, experiment 1. Models were fit jointly to Task A and B category choices. See Figure 3.13 caption.

8 pars. 9 pars. 8 pars. 9 pars. 10 pars.
Fixed Bayes-dN Ori. Est. Lin. Neur. Lin

9 pars.
8 pars.
9 pars.
10 pars.
10 pars.

Bayes-dN
Ori. Est.
Lin. Neur.

Lin
Quad

−1095 [−1657,−629]
−1190 [−2614,−144]
−591 [−2068, 460]

−1690 [−2534,−976]
−1319 [−2541,−611]

−114 [−1026, 579]
486 [−504, 1211]

−595 [−927,−311]
−236 [−1072, 358]

591 [406, 789]
−492 [−1023, 238]
−154 [−772, 613]

−1087 [−1690,−245]
−729 [−1365,−38] 323 [−423, 1127]

Table 3.3 Cross comparison of all models in Figure 3.16. See Table 3.1 caption.
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Figure 3.17 Model comparison, experiment 1. Noise parameters were fit to Task A category choices and then fixed during the fitting
of Task B category and confidence responses. See Figure 3.13 caption.

15 pars. 13 pars. 16 pars. 15 pars. 16 pars. 22 pars.
Fixed BayesS-dN BayesW-dN Ori. Est. Lin. Neur. Lin

13 pars.
16 pars.
15 pars.
16 pars.
22 pars.
22 pars.

BayesS-dN
BayesW-dN
Ori. Est.
Lin. Neur.

Lin
Quad

−2704 [−3351,−2027]
−3257 [−3965,−2494]
−1498 [−2877,−420]
−1837 [−3566,−378]
−5016 [−6727,−3090]
−4367 [−6304,−2391]

−533 [−920,−283]
1184 [23, 2129]

846 [−609, 2092]
−2303 [−3578,−921]
−1670 [−3268,−39]

1724 [575, 2808]
1386 [−13, 2732]

−1773 [−2845,−451]
−1135 [−2501, 333]

−345 [−933, 262]
−3497 [−4860,−1817]
−2836 [−4544,−1122]

−3127 [−4549,−1575]
−2449 [−4200,−969] 606 [6, 1269]

Table 3.4 Cross comparison of all models in Figure 3.17. See Table 3.1 caption.
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Lin
Quad

BayesWeak-dN
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Fixed
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'(LOOLin

a

0 0.25 0.5 0.75 1
protected exceedance probability

b
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Figure 3.18 Model comparison, experiment 2. Models were fit jointly to Task A and B category and confidence responses. See
Figure 3.13 caption.

19 pars. 13 pars. 17 pars. 20 pars. 19 pars. 20 pars. 30 pars.
Fixed BayesU-dN BayesS-dN BayesW-dN Ori. Est. Lin. Neur. Lin

13 pars.
17 pars.
20 pars.
19 pars.
20 pars.
30 pars.
30 pars.

BayesU-dN
BayesS-dN
BayesW-dN
Ori. Est.
Lin. Neur.

Lin
Quad

−907 [−1572,−365]
−1490 [−2210,−886]
−1678 [−2542,−1007]
−872 [−1297,−487]
−876 [−1401,−395]
−2095 [−2889,−1344]
−2014 [−3036,−1186]

−565 [−1032,−266]
−767 [−1262,−386]

56 [−561, 574]
55 [−711, 693]

−1160 [−1780,−694]
−1096 [−1807,−530]

−190 [−363,−82]
620 [218, 1089]
623 [99, 1184]

−589 [−841,−375]
−523 [−893,−220]

813 [356, 1394]
801 [253, 1491]

−396 [−622,−186]
−331 [−562,−109]

−7 [−219, 216]
−1218 [−1680,−791]
−1136 [−1815,−638]

−1205 [−1757,−785]
−1124 [−1922,−613] 74 [−195, 252]

Table 3.5 Cross comparison of all models in Figure 3.18. See Table 3.1 caption.
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expected posterior probability of model
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Figure 3.19 Model comparison, experiment 3. Models were fit to Task B category and confidence responses. See Figure 3.13 caption.

15 pars. 13 pars. 16 pars. 15 pars. 16 pars. 22 pars.
Fixed BayesS-dN BayesW-dN Ori. Est. Lin. Neur. Lin

13 pars.
16 pars.
15 pars.
16 pars.
22 pars.
22 pars.

BayesS-dN
BayesW-dN
Ori. Est.
Lin. Neur.

Lin
Quad

−4505 [−7282,−1816]
−5967 [−8702,−3369]

−256 [−841, 423]
−450 [−1535, 1290]

−5759 [−7866,−3694]
−7326 [−9955,−4905]

−1454 [−2179,−835]
4311 [1432, 7134]
4114 [733, 7796]

−1240 [−2567, 65]
−2833 [−3807,−1926]

5727 [3067, 8527]
5552 [2338, 9135]
226 [−812, 1246]

−1361 [−2022,−777]

−214 [−1176, 1256]
−5530 [−7707,−3539]
−7120 [−9838,−4636]

−5337 [−8191,−2846]
−6902 [−10376,−3981] −1577 [−2562,−750]

Table 3.6 Cross comparison of all models in Figure 3.19. See Table 3.1 caption.
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Figure 3.20 Model comparison, experiment 3. Models were fit to Task B category choices. See Figure 3.13 caption.

7 pars. 8 pars. 7 pars. 8 pars. 8 pars.
Fixed Bayes-dN Ori. Est. Lin. Neur. Lin

8 pars.
7 pars.
8 pars.
8 pars.
8 pars.

Bayes-dN
Ori. Est.
Lin. Neur.

Lin
Quad

−964 [−1290,−663]
−255 [−987, 369]

215 [−566, 827]
−1084 [−1675,−619]
−777 [−1361,−359]

707 [119, 1259]
1174 [535, 1772]
−117 [−436, 76]
162 [−290, 670]

457 [254, 685]
−830 [−1317,−334]
−531 [−1059,−23]

−1294 [−1825,−778]
−988 [−1526,−549] 290 [−138, 793]

Table 3.7 Cross comparison of all models in Figure 3.20. See Table 3.1 caption.
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Figure 3.21 Bayes-dN fits, as in Figure 3.8
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Figure 3.22 Fixed fits, as in Figure 3.8.
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Figure 3.23 Orientation Estimation fits, as in Figure 3.8.

80



0

0.25

0.5

0.75

1

pr
op

. r
ep

or
t "

ca
t. 

1"

a
Task A

cat. 1
cat. 2

b
Task B

highestlowest
reliability

m
ea

n 
bu

tto
n 

pr
es

sc

highestlowest
reliability

d

1 2 3 4
confidence

0
0.1
0.2
0.3
0.4
0.5

pr
op

. o
f t

ot
al

e

1 2 3 4
confidence

f

1 2 3 4
confidence

0.5

0.6

0.7

0.8

0.9

pr
op

. c
or

re
ct

g
Task A
Task B

highestlowest
reliability

1

2

3

4

m
ea

n 
co

nf
id

en
ce

h
Task A

correct
incorrect

highestlowest
reliability

i
Task B

1

2

3

4

m
ea

n 
co

nf
id

en
ce

j k

0

0.25

0.5

0.75

1

pr
op

. r
ep

or
t "

ca
t. 

1"

l

highest rel.
lowest rel.

m

-11-7 -5 -3 -2 0  2  3  5  7  11 
orientation (°)

m
ea

n 
bu

tto
n 

pr
es

sn

-16-7 -4 -2 -1 0  1  2  4  7  16 
orientation (°)

o

Linear Neural
Figure 3.24 Linear Neural fits, as in Figure 3.8.
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Figure 3.25 Lin fits, as in Figure 3.8.

3.3.3 Effect of stimulus type on model comparison results

In experiment 1, since some subjects only saw Gabors and some only saw ellipses, we used

Spearman’s rank correlation coefficient to measure the similarity of the two groups’ model

rankings. Spearman’s rank correlation coefficient between Gabor and ellipse subjects for the

summed LOO scores of the model groupings in Figure 3.11 and Figure 3.13 was 0.952 and

0.944, respectively (a value of 1 would indicate identical rankings). In both model groupings,

the identities of the lowest- and highest-ranked models were the same for both Gabor and
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ellipse subjects. This indicates that the choice of stimulus type did not have a systematic

effect on model rankings.

3.3.4 Model comparison metric analysis

We determined that our results were not dependent on our choice of metric. We computed

AIC, BIC, AICc, WAIC, and LOO for all models in the 8 model groupings, multiplying

the information criteria by −1
2 to match the scale of LOO (Section 3.2.4.7). For AIC, BIC,

and AICc, we used the parameter sample with the highest log likelihood as our estimate of

θMLE. Then we computed Spearman’s rank correlation coefficient for every possible pairwise

comparison of model comparison metrics for all model and dataset combinations, producing

80 total values (8 model groupings × 10 possible pairwise comparisons of model comparison

metrics). All values were greater than 0.998, indicating that, had we used an information

criterion instead of LOO, we would not have changed our conclusions. Furthermore, there

are no model groupings in which the identities of the lowest- and highest-ranked models are

dependent on the choice of metric. The agreement of these metrics strengthens our confidence

in our conclusions.

3.3.5 Model recovery

We performed a model recovery analysis (van den Berg et al., 2014) to test our ability to

distinguish our 6 core models, as well as the 2 stronger versions of the Bayesian model. We

generated synthetic datasets from each of the 8 models for both Tasks A and B, using the

same sets of stimuli that were originally randomly generated for each of the 11 subjects. To

ensure that the statistics of the generated responses were similar to those of the subjects,

we generated responses to these stimuli from 4 of the randomly chosen parameter estimates

obtained via MCMC sampling (as described in Section 3.2.4.6) for each subject and model. In
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total, we generated 352 datasets (8 generating models × 11 subjects × 4 datasets). We then

fit all 8 models to every dataset, using maximum likelihood estimation (MLE) of parameters

by an interior-point constrained optimization (MATLAB’s fmincon), and computed AIC

scores from the resulting fits.

We found that the true generating model was the best-fitting model, on average, in all

cases (Figure 3.26). Overall, AIC “selected” the correct model (i.e., AIC scores were lowest

for the model that generated the data) for 86.6% of the datasets, indicating that our models

are distinguishable.
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Figure 3.26 Model recovery analysis. Shade
represents the difference between the mean AIC
score (across datasets) for each fitted model
and for the one with the lowest mean AIC score.
White squares indicate the model that had the
lowest mean AIC score when fitted to data gen-
erated from each model. The squares on the
diagonal indicate that the true generating model
was the best-fitting model, on average, in all
cases.

Ideally, we would have evaluated our model recovery fits using LOO, as we evaluated the

fits to human data. However, LOO can only be obtained when fitting with MCMC sampling,

which takes orders of magnitudes longer than fitting with MLE. It would be impossible to fit

all 352 synthetic datasets in a short amount of time using the same procedure and sampling

quality standards described in Section 3.2.4.6 (i.e., a large number of samples, across multiple

converged chains). Furthermore, we do not believe that our model recovery is dependent on

how the models are fit and the fits are evaluated; we found that AIC and LOO scores gave

us near-identical model rankings for data from real subjects (Section 3.3.4).
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3.4 Discussion

We carried out a strong test of whether human confidence reports are Bayesian, using

overlapping categories (Palminteri et al., 2017), withholding feedback on testing trials,

and varying experimental components such as task, stimulus type, and stimulus reliability

(Maloney and Mamassian, 2009). We used model comparison to investigate the computational

underpinnings of confidence, fitting a total of 75 models from 6 distinct model families.

Our first finding is that, like the optimal observer, subjects use knowledge of their sensory

uncertainty when reporting confidence in a categorical decision; models in which the observer

ignores their sensory uncertainty provide a poor fit to the data (Figure 3.9). Our second

finding is that subjects do not appear to use knowledge of their sensory uncertainty in a way

that is fully consistent with the Bayesian confidence hypothesis. Instead, heuristic models

that approximate Bayesian computation—but do not compute a posterior probability over

category—outperform the Bayesian models in two tasks (Figure 3.10, compare top row to

bottom two rows). This result continued to hold after we relaxed assumptions about the

relationship between reliability and noise, and about the subject’s knowledge of the generating

model. We accounted for the fact that our models had different amounts of flexibility by using

a wide array of model comparison metrics and by showing that our models are meaningfully

distinguishable.

Our conclusions differ from those of some recent experimental findings. Like the present

study, Aitchison et al. (2015) found evidence that confidence reports may emerge from

heuristic computations. However, they sampled stimuli from only a small region of their two-

dimensional space, where model predictions may not vary greatly. Therefore, their stimulus

set did not allow for the models to be strongly distinguished. Furthermore, although they

tested for Bayesian computation, they did not test for probabilistic computation (whether
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observers take sensory uncertainty into account on a trial-to-trial basis (Ma, 2012)) as we do

here. Such a test requires that the experimenter vary the reliability, not only the value, of

the stimulus feature of interest.

Sanders et al. (2016) reported that confidence has a “statistical” nature. However, their

experiment was unable to determine whether confidence is Bayesian or not (Ma and Jazayeri,

2014), because the stimuli varied along only one dimension. Aitchison et al. (2015) note that,

to distinguish models of confidence, the experimenter must use stimuli that are characterized

by two dimensions (e.g., contrast and orientation). This is because, when fitting models that

map from an internal variable to an integer confidence rating, it is impossible to distinguish

between two internal variables that are monotonically related (in the case of Sanders et al.

(2016), the measurement and the posterior probability of being correct). Therefore, the only

alternative model proposed by Sanders et al. (2016) is based on reaction time, rather than on

the presented stimuli.

Navajas et al. (2017) suggested that confidence reports are best described as a weighted

average of precision and the probability of being correct. However, their model uses the

estimated probability of being correct under a non-Bayesian decision rule (Section 2.6.2).

They did not show the fit of a Bayesian model, and therefore their study does not constitute a

true test of whether confidence is Bayesian. Here, we tested and rejected the hypothesis that

confidence is a weighted average of precision and the posterior probability of being correct

under a Bayesian decision rule.

Our results raise general issues about the status of Bayesian models as descriptions

of behavior. First, because it is impossible to exhaustively test all models that might be

considered “Bayesian,” we cannot rule out the entire class of models. However, we have tried

to alleviate this issue as much as possible by testing a large number of Bayesian models—far

more than the number of Bayesian and non-Bayesian models tested in other studies of
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confidence. Second, Bayesian models are often held in favor for their generalizability; one

can determine the performance-maximizing strategy for any task. Although generalizability

indeed makes Bayesian models attractive and powerful, we do not believe that this property

should override a bad fit.

In the next chapter, we will test a different manipulation of sensory uncertainty.
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Chapter 4

Human confidence reports under
top-down stimulus uncertainty

4.1 Introduction

In the previous chapter, we tested whether confidence ratings were Bayesian when stimulus

uncertainty came from bottom-up factors, external to the observer. In particular, we adjusted

uncertainty by manipulating stimulus contrast or elongation. Uncertainty, however, can

originate not only from the external world but also from one’s internal state.

Attention is a critical internal state variable that governs the uncertainty of visual

representations (Carrasco, 2011; Reynolds and Chelazzi, 2004); it modulates basic perceptual

properties like contrast sensitivity (Carrasco et al., 2000; Lu and Dosher, 1998) and spatial

resolution (Anton-Erxleben and Carrasco, 2013). Surprisingly, it has been suggested that,

unlike for external sources of uncertainty, people fail to take attention into account during

perceptual decision-making (Morales et al., 2015; Rahnev et al., 2011, 2012a), leading to

inaccurate decisions and overconfidence—a risk in attentionally demanding situations like

driving a car. However, this proposal has never been directly tested using formal model

comparison.
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The work presented in this Chapter is similar to the work presented in Chapter 3, Experi-

ment 1, with three major changes. First, we induce stimulus uncertainty by manipulating

subjects’ attention levels rather than stimulus reliability. Second, subjects only perform Task

B, rather than both Tasks A and B. Third, while we tested dozens of models in Chapter 3,

here we test only a handful of representative models.

As in Chapter 3, we find that the BCH qualitatively describes behavior, and fits much

better than the Fixed model, in which observers ignore their uncertainty. Unlike in Chapter 3,

however, we are unable to distinguish the Bayesian model from heuristic models that take

sensory uncertainty into account in a non-Bayesian way.

4.2 Methods

4.2.1 Experiment

Observers completed the Task B categorization task described in Section 3.2.1, except that

we manipulated stimulus uncertainty by cuing observers to pay more or less attention to a

stimulus. This required us to make several modifications to the experiment. On each trial,

four stimuli were briefly presented on each trial, and a response cue indicated which stimulus

to report. Preceding the stimulus presentation, we manipulated voluntary (i.e., endogenous)

attention on a trial-to-trial basis using a spatial cue that pointed to either one stimulus

location (valid condition: the response cue matched the cue, 66.7% of trials; and invalid

condition: it did not match, 16.7% of trials) or all four locations (neutral condition: 16.7% of

trials) (Figure 4.1b). Twelve subjects participated, with about 2000 trials per subject.
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Figure 4.1 Stimuli and task. (a) Stimulus orientation distributions for each category. (b) Trial sequence.
Cue validity, the likelihood that a precue to one quadrant would match the response cue, was 80%.

4.2.1.1 Subjects

Twelve subjects (7 female, 5 male), aged 18–25 years, participated in the experiment. These

subjects came from an original set of 28 subjects who completed at least one session. The

remaining subjects did not complete the experiment, either because they were excluded

on the basis of their staircase performance (Section 4.2.1.3) or because they chose to stop
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participating before all sessions were completed. Subjects received $10 per 40–60 minute

session, plus a completion bonus of $25. The experiments were approved by the University

Committee on Activities Involving Human Subjects of New York University. Informed consent

was given by each subject before the experiment. All subjects were naïve to the purpose of

the experiment. No subjects were fellow scientists.

4.2.1.2 Apparatus and stimuli

Apparatus Subjects were seated in a dark room, at a viewing distance of 57 cm from the

screen, with their chin in a chinrest. Stimuli were presented on a gamma-corrected 100 Hz,

21-inch display (Model Sony GDM-5402). The display was connected to a 2010 iMac running

OS X 10.6.8 using MATLAB (Mathworks) with Psychophysics Toolbox 3 (Brainard, 1997;

Kleiner et al., 2007; Pelli, 1997).

Stimuli The background was mid-level gray (60 cd/m2). Stimuli consisted of drifting

Gabors with a spatial frequency of 0.8 cycles per degree, a speed of 6 cycles/s, a Gaussian

envelope with a s.d. of 0.8 degrees of visual angle (dva), and a randomized starting phase. In

category training, the stimuli were positioned at fixation, and the central fixation cross was a

black “+” subtending 1.2 dva in diameter. In all other blocks, one stimulus was positioned

in each of the four quadrants of the screen, at 45, 135, 225, and 315 degrees, 5 dva from

fixation, and the fixation cross was a black “×” with each arm pointing to a quadrant. One

or more of the arms turned white to provide a precue or response cue (Figure 4.1b). Stimulus

contrast depended on the block type.

Categories Stimulus categories were as described in Section 3.2.1 for Task B.
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Attention manipulation During attention training and testing blocks, voluntary spatial

attention was manipulated via a central precue presented at the start of the trial. A response

cue at the end of the trial indicated which of the four stimuli to report. On each trial, each

of the four stimuli was drawn from one of the two category distributions. Each stimulus was

generated independently. In valid trials (66.7% of all trials), a single quadrant was precued

and the response cue matched the precue. In invalid trials (16.7%), a single quadrant was

precued and the response cue did not match the precue. Cue validity was therefore 80% when

a single quadrant was precued. In neutral trials (16.7%), all four quadrants were precued,

and the response cue pointed to one of the four quadrants with equal probability for each

quadrant.

4.2.1.3 Procedure

Each subject completed seven sessions. Because our behavioral task involved multiple

components (orientation categorization, confidence reports, and attention), we trained subjects

on each component in a stepwise fashion, as described below.

The first two sessions (“staircase sessions”) were used to screen subjects and find a

stimulus contrast level that would achieve maximum separability in performance across

the three attention conditions. Each staircase session consisted of 3 category training

blocks and 3 category/attention testing-with-staircase blocks, in alternation. No confidence

reports were collected in these sessions. The first category training block was preceded by a

category demo, and the first category/attention testing-with-staircase block was preceded by

a category/attention training block. Detailed instructions were provided in the first session.

Most blocks consisted of sets of trials, in between which the subject was informed of their

progress (e.g., “You have completed three quarters of Testing Block 2 of 3”) and allowed

to rest. The staircase sessions also served as practice on the categorization and attention
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components of the task, so that subjects knew them well by the time they started the main

experiment. During these sessions, stimulus contrast was 35% for training blocks, and varied

during the testing-with-staircase blocks.

The final five sessions (“test sessions”) comprised the main experiment. Each test

session consisted of 3 category training blocks and 3 confidence/attention testing blocks, in

alternation. The first category training block was preceded by a category demo, and the first

confidence/attention testing block was preceded by a confidence/attention training block.

During these sessions, stimulus contrast was fixed to a subject-specific value in all blocks.

Combining all test sessions, 9 subjects completed 15 confidence/attention testing blocks

(2160 trials), 2 subjects completed 14 testing blocks (2016 trials), and 1 subject completed 12

testing blocks (1728 trials). Accuracy on category training trials was 70.8% ± 4.0% (mean

± 1 s.d.) in staircase sessions and 71.9% ± 4.0% in test sessions, indicating that subjects

learned the category distributions well (recall that maximum accuracy on the task is ~80%).

Eye tracking Eye tracking (Eyelink 1000) was used to monitor fixation online. In all

blocks, trials were only initiated when the subject was fixating. In testing blocks, trials in

which subjects broke fixation due to blinks or eye movements were aborted and repeated

later in the experiment.

Instructions First staircase session. Before the first category training block, we provided

subjects with a printed graphic similar to Figure 4.1a, explained how the stimuli were generated

from distributions, and explained the category training procedure. We also explained that

trials would only proceed when the subject maintained fixation. Before the category/attention

training block, we explained the attention task using an onscreen graphic that explained the

cuing procedure and a printed graphic that illustrated cue validity. We also explained the

requirement to maintain fixation from the precue until the response cue and the consequences
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of breaking fixation. Before the first category/attention testing-with-staircase block, we

explained that the stimulus presentation time would be shorter and that the contrast of the

stimuli would vary.

First test session. Before the confidence/attention training block, we explained two changes

to the experiment. First, we told subjects that they would be reporting category choice and

confidence simultaneously. We provided a printed graphic similar to the buttons shown in

Figure 4.1b, showing the eight buttons representing category choice and confidence level, the

latter on a 4-point scale. The confidence levels were labeled as “very high,” “somewhat high,”

“somewhat low,” and “very low.” All printed graphics were visible to subjects throughout the

experiment. Second, we told subjects that contrast would be fixed (rather than variable) for

the remainder of the experiment, in all blocks.

Category demo We showed subjects 25 randomly drawn exemplar stimuli from each

category (50 exemplars in the first staircase session). Stimulus contrast was 35% in staircase

sessions and subject-specific in test sessions.

Category training To ensure that subjects knew the stimulus distributions well, we

gave them extensive category training with trial-to-trial correctness feedback and foveal

stimulus presentation to reduce orientation uncertainty. Each trial proceeded as follows:

Subjects fixated on a central cross for 1 s. Category 1 or category 2 was selected with

equal probability. The stimulus orientation was drawn from the corresponding stimulus

distribution and displayed as a drifting Gabor. The stimulus appeared at fixation for 300

ms, replacing the fixation cross. Subjects were asked to report category 1 or category 2 by

pressing a button with their left or right index finger, respectively. Subjects were able to

respond immediately after the offset of the stimulus, at which point correctness feedback was

displayed for 1.1 s, e.g., “You said Category 1. Correct!” The fixation cross then reappeared.
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In staircase sessions, the stimulus contrast was 35%. In test sessions, the contrast matched

the subject-specific levels chosen for testing blocks, in order to minimize obvious changes

between training and testing blocks. Each category training block had 2 sets of 36 trials (72

total). At the end of the block, subjects were shown the percentage of trials that they had

correctly categorized.

Category/attention training To familiarize subjects with the attention task before the

testing-with-staircase blocks, they completed category/attention training. Subjects performed

the attention task, reporting only category choice. To prevent subjects from forming a

simple mapping of orientation measurement and attention condition onto the probability of

category 1 (which might have biased behavior towards the Bayesian model), we withheld

trial-to-trial feedback on this and all other types of attention blocks. The precue indicating

which location(s) to attend to appeared for 300 ms, followed by a 300 ms period in which

a standard fixation cross was shown. Then the four drifting Gabor stimuli were displayed

for 300 ms. After another 300 ms period with a fixation cross, the response cue appeared,

indicating which stimulus to report. The response cue remained on the screen until the

subject pressed one of the two choice response buttons, with no time pressure. Subjects

were free to blink or rest briefly between trials, with a minimum intertrial interval of 800 ms.

All attention conditions were randomly intermixed. The stimulus contrast was 35%, as in

staircase session category training. The block had 36 trials in the first session and 30 trials

in subsequent sessions. At the end of the block, subjects were shown the percentage of trials

they had correctly categorized.

Category/attention testing-with-staircase The purpose of this block was to determine

the stimulus contrast for each subject that would be used in the test sessions. The trial

procedure was identical to that of category/attention training, except that stimulus presenta-
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tion time was 80 ms (instead of 300 ms) and stimulus contrast varied. We used an adaptive

staircase procedure to determine the stimulus contrast on each trial and estimate psychometric

functions for performance accuracy as a function of log contrast. Separate staircases were used

for valid, neutral, and invalid conditions. We used Luigi Acerbi’s MATLAB implementation

(github.com/lacerbi/psybayes) of the PSI method by Kontsevich and Tyler (Kontsevich and

Tyler, 1999), extended to include the lapse rate (Prins, 2012). The method generates a

posterior distribution over three parameters of the psychometric function: threshold µ, slope

σ, and lapse rate λ. On each trial, it selects a stimulus intensity that maximizes the expected

information gain by completion of the trial (note in Figure 4.2 that the selected trials are

most numerous where the slopes of the psychometric curves are highest). µ (log contrast

units) ranged from −6.5 to 0 and had a Gaussian prior distribution with mean −2 and s.d.

1.2. log σ ranged from −3 to 0, and had a uniform prior distribution across the range. λ

ranged from 0.15 (because the maximum accuracy in the task was slightly below 1− 0.15)

to 0.5, and had a Beta prior distribution with shape parameters α = 20 and β = 39. Each

block had 4 sets of 36 trials (144 total). At the end of the block, subjects were shown the

percentage of trials that they had correctly categorized.

Subject and contrast selection After each subject’s final staircase session, we plotted

and visually inspected the mean and s.d. of the posterior over the 3 (valid, neutral, and

invalid) estimated psychometric functions (an example is shown in Figure 4.2). A subject

was considered eligible for the remainder of the study if there existed a contrast level at

which the mean minus the s.d. of the posterior over invalid psychometric functions was above

chance, and the mean minus the s.d. of the posterior over valid psychometric functions was

greater than the mean plus 1 s.d. of the posterior over invalid psychometric functions (for

example, note that there is a range of values in Figure 4.2 for which the red shading does not
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overlap with the chance line or with the green shading). Subjects for which there were no

suitable contrast levels did not continue the study. Each experimenter selected a log contrast

for which the separation between valid, neutral, and invalid performance appeared, by visual

inspection, to be maximal. We then took the average of these log contrast values.

We used this subject screening and contrast selection procedure because, in order to test

our hypothesis, we needed uncertainty to depend on attention. This procedure increased the

probability that uncertainty would vary between attention conditions in the final dataset.

Selected contrasts ranged from 4% to 60% across subjects.
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Figure 4.2 Example plot used to determine per-subject stimulus
contrast. Each curve shows the mean ±1 s.d. of the posterior
over psychometric functions for each attention condition. Error
bars indicate the mean ±1 s.d. of the beta distribution over
correctness within log contrast bins. A dot indicates one correct
or incorrect trial, located respectively at the top or bottom
of the plot, with vertical jitter. For this example subject, we
selected a log contrast of -2.3 (i.e., a contrast of 10%).

Confidence/attention training To familiarize subjects with the button mappings for

choice and confidence, they completed confidence/attention training. The trial procedure was

identical to category/attention training, except subjects reported their confidence on each

trial in addition to their category choice. Subjects were not instructed to use the full range

of confidence reports, as that might have biased them away from reporting what felt most

natural. Instead, they were simply asked to be “as accurate as possible in reporting their

confidence” on each trial. Feedback about their choice and confidence report was presented

for 1.2 s after each trial, e.g., “You said category 2 with HIGH confidence.” The stimulus

contrast was specific to each subject, based on the staircase sessions. There were 30 trials

per block.
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Confidence/attention testing These were the main experimental blocks. The trial

procedure (Figure 4.1b) was the same as in confidence/attention training blocks, but with no

trial-to-trial feedback whatsoever. Each block had 4 sets of 36 trials (144 total). At the end

of each block, subjects were required to take a break of at least 30 s. During the break, they

were shown the percentage of trials that they had correctly categorized. Subjects were also

shown a list of the top 10 block scores (across all subjects, indicated by initials). This was

intended to motivate subjects to perform well, and to reassure them that their scores were

normal, since it is rare to score above 75% on a block.

4.2.2 Modeling

We tested two sets of models: category choice and confidence models, and category choice-only

models. Model parameters are described in Tables 4.1 and 4.2. The model referred to in

Chapter 3 as Bayes-dN or Bayes is referred to as Bayesian in this chapter. Model specification

and fitting procedures for this chapter were as described in Section 3.2.4, except for the

following differences.

4.2.2.1 Model specification

Free We fit a Free model in which the observer compares the orientation measurement to a

set of boundaries that vary nonparametrically (i.e., free of a parametric relationship with σ)

across attention conditions. We used this model only for the purpose of obtaining estimates of

the category decision boundary parameters. We fit free parameters k4,valid, k4,neutral, k4,invalid,

and used measurement boundaries b4,attention condition = k4,attention condition.
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4.2.2.2 Model fitting

For each chain, we took 100,000 to 1,000,000 total samples (depending on model computational

time) from the posterior distribution over parameters. We discarded the first third of the

samples and kept 6,667 of the remaining samples, evenly spaced to reduce autocorrelation.

All samples with log posteriors more than 40 below the maximum log posterior were discarded.

Marginal probability distributions of the sample log likelihoods were visually checked for

convergence across chains. In total we had 120 model and dataset combinations, with a

median of 40,002 kept samples (interquartile range = 13,334).

Fixed Bayesian Linear Quadratic

Measurement noise σvalid, σneutral, σinvalid

Orientation-dependent noise ψ

Decision boundaries k1−7 k1−7, m1−7

d noise σd

Lapse rates λ1, λ4, λconfidence, λrepeat

Total number of parameters 15 16 22 22

Table 4.1 Parameters of category choice and confidence decision models. Note that we did not present
a corresponding table like this for the models presented in Chapter 3, due to the large number of models.
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Fixed Bayesian
Bayesian,

no d noise*
Linear Quadratic Free*

Measurement noise σvalid, σneutral, σinvalid

Orientation-dependent noise ψ

Decision boundaries k k, m kvalid, kneutral, kinvalid

d noise σd

Lapse rates λ, λrepeat

Total number of parameters 7 8 7 8 8 9

Table 4.2 Parameters of category choice-only decision models. * indicates models that were used only
for obtaining parameter estimates (Figure 4.8, Figure 4.7c), and not for model comparison. Note that
we did not present a corresponding table like this for the models presented in Chapter 3, due to the large
number of models.

4.3 Results

4.3.1 Descriptive statistics

Cue validity increased categorization accuracy [one-way repeated-measures ANOVA,

F (2, 11) = 95.88, p < 10−10], with higher accuracy following valid cues [two-tailed paired

t-test, t(11) = 7.92, p < 10−5] and lower accuracy following invalid cues [t(11) = 4.62,

p < 10−3], relative to neutral cues (Figure 4.3a, left). This pattern confirms that attention

increased orientation sensitivity (e.g., (Cameron et al., 2002; Lu and Dosher, 1998)). Attention

also increased confidence ratings [F (2, 11) = 13.35, p < 10−3] and decreased reaction time

[F (2, 11) = 28.76, p < 10−6], ruling out speed-accuracy tradeoffs as underlying the effect of

attention on accuracy (Figure 4.3a).

Decision rules in this task are defined by how they map stimulus orientation and attention

condition onto a response. We therefore plotted behavior as a function of these two variables.

Overall performance was a “W”-shaped function of stimulus orientation (Figure 4.3b, left),
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Figure 4.3 Behavioral data. n= 12 subjects. Error bars show trial-weighted mean and SEM across
subjects. (a) Accuracy, confidence ratings, and reaction time as a function of cue validity. Maximum
accuracy is ~80% because the stimulus distributions overlap. (b) As in a, but as a function of cue
validity and stimulus orientation.

reflecting the greater difficulty in categorizing a stimulus when its orientation was near a

category boundary. Attention increased the sensitivity of category and confidence responses

to the stimulus orientation (Figure 4.3b).

4.3.2 Model comparison

To assess whether subjects changed their category and confidence decision boundaries to

account for attention-dependent orientation uncertainty, we first fit two of the models described

in Chapter 3: Bayesian and Fixed. As described previously, both models assume that, for

the stimulus of interest, the observer draws a noisy orientation measurement from a normal
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distribution centered on the true stimulus value, with s.d. (i.e., uncertainty) dependent on

attention. In the Bayesian model, decisions depend on the relative posterior probabilities of

the two categories, leading the observer to adjust their decision boundaries in measurement

space, based on attention condition (Figure 4.4a,b, Figure 4.6). The Bayesian model

maximizes accuracy and produces confidence reports that are a function of the posterior

probability of being correct. In the Fixed model, observers use the same decision criteria,

regardless of the attention condition (Caetta and Gorea, 2010; Gorea et al., 2005; Gorea and

Sagi, 2000, 2001, 2002; Morales et al., 2015; Rahnev et al., 2011, 2012b; Zak et al., 2012) (i.e.,

they are fixed in measurement space, Figure 4.4a,b). We used Markov Chain Monte Carlo

sampling to fit the models to raw, trial-to-trial category and confidence responses from each

subject.

Subjects’ decisions took attention-dependent uncertainty into account. The Bayesian

model captured the data well (Figure 4.4c) and substantially outperformed the Fixed model

(Figure 4.4c,d), which had systematic deviations from the data (although the fit depends

on the full data set, note deviations near zero tilt and at large tilts in Figure 4.4c). To

compare models, we used an approximation of leave-one-out cross-validated log likelihood

called PSIS-LOO (henceforth LOO) (Vehtari et al., 2015). Bayesian outperformed Fixed by

LOO differences (median and 95% CI of bootstrapped meanI differences across subjects) of

102 [45, 167]. This implies that the attentional state is available to the decision process and

is incorporated into probabilistic representations used to make the decision.

To determine whether Bayesian computations are necessary to produce the behavioral data,

we tested two models with heuristic decision rules, previously described in Chapter 3: Linear

and Quadratic. These models approximate the Bayesian boundaries (Figure 4.5a) without

I Note that in Chapter 3 we used boostrapped summed differences, which partly explains why the
differences might appear smaller in this chapter
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Figure 4.4 Model schematics, fits, and fit com-
parison. (a) Schematic of Bayesian (left) and
Fixed (right) models. As attention decreases, un-
certainty (the measurement noise s.d.) increases,
and orientation measurement likelihoods (blue
and red curves) widen (Giordano et al., 2009).
In the Bayesian model, choice and confidence
boundaries are defined by posterior probability
ratios and therefore change as a specific function
of uncertainty. In the Fixed model, boundaries
do not depend on uncertainty. Colors indicate
category and confidence response (color code
in Figure 4.1b). (b) Decision rules for Bayesian
and Fixed models show the mappings from orien-
tation measurement and uncertainty to category
and confidence responses. Horizontal lines indi-
cate the uncertainty levels used in a; note that
the regions intersecting with a horizontal line
match the regions in the corresponding plot in
a. (c) Model fits to response as a function of
orientation and cue validity. Mean response is
an 8-point scale ranging from “high confidence”
category 1 to “high confidence” category 2, with
colors corresponding to those in Figure 4.1b; only
the middle 6 responses are shown. Error bars
show mean and SEM across subjects. Shaded
regions are mean and SEM of model fits (Meth-
ods). Although mean response is shown here,
models were fit to raw trial-to-trial data. (d)
Model comparison. Black bars represent individ-
ual subject LOO differences of Bayesian from
Fixed. Negative values indicate that Bayesian
had a higher (better) LOO score than Fixed.
Blue line and shaded region show median and
95% confidence interval of bootstrapped mean
differences across subjects.

any computation of the posterior. The Linear and Quadratic models both outperformed the

Fixed model (LOO differences of 124 [77, 177] and 129 [65, 198], respectively; Figure 4.5b,c).

The best model, quantitatively, was Quadratic, as in Qamar et al. (2013) and Chapter 3
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(Table 4.3 shows pairwise LOO comparisons of all models). Decision rules therefore changed

with attention without requiring Bayesian computations.

We next asked whether the category decision boundary alone—regardless of confidence—

accounts for attention-dependent uncertainty. We were able to answer this question because,

unlike in a traditional left vs. right orientation discrimination task, the optimal category

decision boundaries in this task depend on orientation uncertainty (Figure 4.4a,b, Figure 4.6)

(Qamar et al., 2013). We fit the four models to the category choice data only and again

rejected the Fixed model (Figure 4.7a,b; Table 4.4). We also fit the category choice data with

a Free model in which the category decision boundaries varied freely and independently for

each attention condition. The estimated boundaries differed between valid and invalid trials

(Figure 4.7c, Figure 4.8), with a mean difference of 7.5◦ (s.d. = 7.8◦) [two-tailed paired t-test,

t(11) = 3.33, p < 10−2]. Therefore, category criteria, independent of confidence criteria,

varied as a function of attention-dependent uncertainty.
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Figure 4.7 Category choice-only models. (a) Proportion of category 1 responses as a function of
orientation and cue validity. Error bars show mean and SEM across subjects. Shaded regions are mean
and SEM of model fits (Methods). (b) LOO model comparison, as in Figure 4.5c. (c) Mean MCMC
orientation uncertainty and category choice boundary parameter estimates for a representative subject.
Estimates are plotted as a function of attention condition (valid, neutral, invalid; filled circles), along
with their generating functions (curves), for the four main models fit to the category choice data only,
plus a Bayesian model with no noise on the decision variable d and a nonparametric model in which
choice boundaries are unconstrained (Free; parameter estimates from this model are plotted in gray for
all subjects in Figure 4.8). The Bayesian curve is to the left of the other curves, because noise attributed
to orientation uncertainty in the other models is partially attributed to decision noise in the Bayesian
model; when the decision noise parameter is removed (Bayesian, no d noise), the curve aligns with the
others.
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15 pars. 16 pars. 22 pars.

Fixed Bayesian Linear

16 pars.

22 pars.

22 pars.

Bayesian

Linear

Quadratic

102 [45, 167]

124 [77, 177]

129 [65, 198]

21 [−3, 48]

27 [0, 53] 5 [−18, 28]

Table 4.3 Cross comparison of all category choice and confidence decision models. Cells indicate medians
and 95% CI of bootstrapped mean LOO score differences. A positive median indicates that the model in
the corresponding row had a higher score (better fit) than the model in the corresponding column.

7 pars. 8 pars. 8 pars.

Fixed Bayesian Linear

8 pars.

8 pars.

8 pars.

Bayesian

Linear

Quadratic

9 [−2, 18]

11 [4, 19]

11 [5, 18]

2 [−3, 10]

2 [−2, 9] 0 [−2, 3]

Table 4.4 Cross comparison of all category choice-only decision models. Conventions as in Table 4.3.
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4.3.3 Model comparison metric analysis

We determined that our results were not dependent on our choice of model comparison

metric. We computed AIC, BIC, AICc, WAIC (Gelman et al., 2013), and LOO for all

models in the 2 model groupings (category choice-plus-confidence and category choice-only),

multiplying the non-LOO metrics by −1
2 to match the scale of LOO. For AIC, BIC, and

AICc, we selected the MCMC sample with the highest log likelihood as our maximum-

likelihood parameter estimate. Then we computed Spearman’s rank correlation coefficient

for every possible pairwise comparison of model comparison metrics for all model and

dataset combinations, producing 20 total values (2 model groupings × 10 possible pairwise

comparisons of model comparison metrics). All values were greater than 0.998, indicating

that, had we used an information criterion instead of LOO, we would not have changed our

conclusions. Furthermore, there are no model groupings in which the identities of the lowest-

and highest-ranked models are dependent on the choice of metric. The agreement of these

metrics strengthens our confidence in our conclusions.

4.3.4 Model recovery

We performed a model recovery analysis (van den Berg et al., 2014) to test our ability to

distinguish our choice and confidence models. We generated synthetic datasets from each

model, using the same sets of stimuli that were originally randomly generated for each of

the 12 subjects. To ensure that the statistics of the generated responses were similar to

those of the subjects, we generated responses to these stimuli from 8 of the randomly chosen

parameter estimates obtained via MCMC sampling for each subject and model. In total, we

generated 384 datasets (4 generating models × 12 subjects × 8 datasets). We then fit all

four models to every dataset, using maximum likelihood estimation (MLE) of parameters by
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an interior-point constrained optimization (MATLAB’s fmincon), and computed AIC scores

from the resulting fits. For reasons of computational tractability, we used AIC instead of

LOO as the model comparison metric. Because AIC and LOO scores gave us near-identical

model rankings for data from real subjects (Section 4.3.3), we do not believe that the model

recovery results are dependent on choice of metric.

We found that the true generating model was the best-fitting model, on average, in all

cases (Figure 4.9). Overall, AIC “selected” the correct model (i.e., AIC scores were lowest for

the model that generated the data) for 87.5% of the datasets, indicating that our models are

distinguishable.
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Figure 4.9 Model recovery analysis. Shade repre-
sents the difference between the mean AIC score
(across synthetic datasets) for each fitted model and
for the one with the lowest mean AIC score. White
squares indicate the model that had the lowest mean
AIC score when fitted to data generated from each
model. The fact that all white squares lie on the
diagonal indicates that the true generating model
was the best-fitting model, on average, in all cases.

4.4 Discussion

In Chapter 3 we found that although subjects use their sense of uncertainty when reporting

confidence, they did not do so in a Bayesian way. We wanted to find out if these results

held even when sensory uncertainty was due to top-down, rather than bottom-up, stimulus

uncertainty. Because we were able to reject the Fixed model here, we conclude that subjects

do use their knowledge of top-down uncertainty. However, we were unable to distinguish the

Bayesian model from probabilistic non-Bayesian models Linear and Quadratic.
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Our rejection of the Fixed model may be surprising in light of the “unified criterion”

account of perceptual decision-making (Gorea and Sagi, 2000, 2001). According to this

account, when multiple relevant items are simultaneously present, the observer adopts a

single, fixed decision boundary (the “unified criterion”) that is used for all items, regardless of

stimulus properties or attentional state. Findings considered to support this account (Caetta

and Gorea, 2010; Gorea et al., 2005; Gorea and Sagi, 2000, 2001, 2002; Morales et al., 2015;

Rahnev et al., 2011, 2012a,b; Zak et al., 2012) imply a rigid, suboptimal mechanism for

perceptual decision-making in real-world complex scenes. We consider two possible differences

between those studies and ours. First, previous studies (Gorea and Sagi, 2000, 2001) may

have been limited in their ability to distinguish changes in criteria from changes in internal

signal variability (Kontsevich et al., 2002). Second, the type of perceptual decision may

be relevant for an observer’s ability to take uncertainty into account. Our study required

subjects to make a categorization decision, whereas those supporting a unified criterion

required detection or orthogonal discrimination (Caetta and Gorea, 2010; Gorea et al., 2005;

Gorea and Sagi, 2000, 2001, 2002; Morales et al., 2015; Rahnev et al., 2011, 2012b; Zak et al.,

2012), which is often used as a proxy for detection (Carrasco et al., 2000; Thomas and Gille,

1979). Additionally, our study asked for confidence rather than visibility (Rahnev et al.,

2011); these prompts are known to produce different results (Rausch and Zehetleitner, 2016).

This chapter represents the first study to show that perceptual decisions, including

confidence reports, take into account attention-related uncertainty. Only a handful of studies

have examined any influence of attention on confidence, and their findings have been mixed.

Two studies found that attention increased confidence (Zizlsperger et al., 2012, 2014), but

another found no effect (Wilimzig et al., 2008). The latter result has been attributed

to response speed pressures (Zizlsperger et al., 2012). Three other studies suggested an

inverse relation between attention and confidence: one reported higher confidence for uncued
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compared to cued error trials (Baldassi et al., 2006), one found higher confidence for stimuli

with incongruent compared to congruent flankers (Schoenherr et al., 2010), and a third found

that lower fMRI BOLD activation in the dorsal attention network correlated with higher

confidence (Rahnev et al., 2012b). Our results, based on an experimental manipulation of

spatial attention with no response speed pressure, support a positive relation between spatial

attention and confidence and further reveal that it is approximately Bayesian. Attention is

typically spread unevenly across multiple objects in a visual scene, so the ability to account

for attention likely improves perceptual decisions in natural vision.

The biggest difference between the results presented here and in Chapter 3 is that here,

we are unable to distinguish the Bayesian model from the probabilistic non-Bayesian heuristic

models Linear and Quadratic. One explanation for this difference is that confidence ratings

are more Bayesian under top-down stimulus uncertainty than under bottom-up stimulus

uncertainty. However, we think there is a more mundane explanation. Because our models are

distinguished by how they take uncertainty into account, model distinguishability increases

with the number of uncertainty levels. In Chapter 3, we tested subjects under 6 different

uncertainty levels (of contrast or of ellipse elongation). However, here, we tested subjects only

under 3 different uncertainty levels (valid, neutral, and invalid attention conditions) because

of the difficulty of training subjects to use multiple levels of cue validity. We think that this

hurt our ability to distinguish models. Future studies aiming to distinguish these models

could obtain more levels of cue validity by using a less coarse cuing mechanism. Another

option would be to optimize stimulus distributions and uncertainty levels (via cue validity or

contrast) for maximum model distinguishability (Myung and Pitt, 2009).II

II Here, we optimized contrast to maximize differences in performance levels across attention conditions
(Section 4.2.1.3). We were using performance differences as a proxy for uncertainty differences, a
prerequisite for distinguishing our models. Optimizing directly for model distinguishability might be
more effective.
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Chapter 5

Confidence reports from trained
neural networks

5.1 Introduction

The outcomes of our model comparisons in the previous chapters do not convince us that

confidence ratings are Bayesian. On the contrary, Bayesian models performed markedly

worse than heuristic models under bottom-down stimulus uncertainty (Chapter 3) and were

indistinguishable from heuristics under top-down uncertainty (Chapter 4). However, one

might still conclude, after examining the fits of the Bayesian model, that the behavior

is “approximately Bayesian” rather than “non-Bayesian.” As written, this is a semantic

distinction because it relies on one’s definition of “approximate.” However, it can be turned

into a more meaningful question: Are the differences between human behavior and Bayesian

models accounted for by an unknown principle, such as an ecologically relevant objective

function that includes both task performance and biological constraints?

Although there are benefits associated with veridical explicit representations of confidence

(Bahrami et al., 2012; Bang et al., 2014; Folke et al., 2016), there are also neural constraints

that may give rise to non-Bayesian behavior (Bowers and Davis, 2012; Jones and Love, 2011).
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Such constraints include the kinds of operations that neurons can perform, the high energy

cost of spiking (Attwell and Laughlin, 2001; Lennie, 2003), and the cost of neural wiring

length (Chklovskii and Koulakov, 2004; Clune et al., 2013). Perhaps such constraints also

restrict the brain’s ability to perform fully Bayesian computation. A search for ecologically

rational constraints on Bayesian computation benefits from the positive characterization of

the deviations from Bayesian computation that we have provided in Chapters 3 and 4, in the

form of heuristic models such as Lin and Quad.

Specifically, one possible way to explain confidence ratings under a normative framework

is to consider whether the brain might be performing near-optimally given implementational

constraints. To explore this possibility, we adopt an approach related to work by Yamins

et al. (2014), who trained neural networks on visual categorization tasks, maximizing their

performance, without exposing the networks to neural data. They then compared the

activation of intermediate layers of the trained networks to the neural activation patterns of

midlevel visual areas. They found that the activation of the networks was highly predictive of

actual neural response, indicating that the brain may have evolved to maximize performance

on similar categorization tasks. Here, we trained simple feedforward neural networks on Task

B, as if the networks were naïve human subjects; we did not expose the networks to human

behavioral data. We will compare the output of the trained networks to that of the human

subjects in Chapter 3 on the basis of model rankings. To anticipate our results, as with the

behavior of the human subjects in Chapter 3, we find that the heuristic models, not the

Bayesian models, provide the best description of the behavior of the neural networks.

This chapter may open a new research program in which the behavior of neural networks

on psychological tasks is systematically compared to the behavior of humans on the basis of

model comparison.
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5.2 Methods

5.2.1 Architecture

In this section, r and r refer to neural activity, not button responses.

As in Orhan and Ma (2017), we trained 3-layer feedforward neural networks to perform

Task B (Section 3.2.1). The architecture, described below, is pictured in Figure 5.1. The

input units were 50 independent Poisson neurons. The mean number of spikes per trial was

determined by Gaussian tuning curves with baselines, such that the neurons had spike count

rinput ∼ Poisson
(
gN (s; s̃, σ2

TC) + ζ
)
,

where s̃ is the vector of preferred stimuli, which were linearly spaced from −40◦ to 40◦. All

neurons had tuning curve width σ2
TC = 100 and baseline ζ = 0.025 (to limit the number

of trials with zero spikes). Gain g varied from trial-to-trial. Input units were connected,

all-to-all, to 200 hidden rectified linear units with responses

rhidden = max(0,Winputrinput),

where Winput was the weight matrix applied to the input units. Both input and hidden layers

included a bias unit with a constant response of 1, which, when multiplied by the fitted

weights, effectively adds a fitted bias to the hidden units and output unit. Hidden units were

connected to a sigmoidal output unit with response

routput = 1
1 + exp(−whidden · rhidden) ,

where whidden was the weight vector applied to the hidden units.
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Figure 5.1 Feedforward neural network architecture. Input units were
independent Poisson neurons with Gaussian tuning curves that were evenly
spaced and of identical width. Input units were connected, all-to-all, to
hidden rectified linear units. Hidden units were connected to a sigmoidal
output unit. The output was mapped onto a category and confidence
response (colors as used in the rest of this dissertation, starting with
Figure 3.1a) using eight quantiles.

5.2.2 Training networks and generating datasets

Stimuli s were drawn from the same distributions used for the human experiments in Task B

(Chapters 3 and 4).

To ensure that the reliability of the information available to the networks was similar

to the reliability of the subjects’ sensory information, the gains were calculated from the

fits to the Task A choice data in Chapter 3, experiment 1. To calculate the gains, we

used the relationship between gain and sensory uncertainty in populations of independent

Poisson neurons, as derived in Ma et al. (2006), supplementary section 2.1. As expected, the

performance of the networks roughly matched the performance of the subjects (Figure 5.3c).

We used 15 different values for the number of training trials, ranging from 10 to 4.6× 105,

logarithmically spaced (Figure 5.2 only depicts results from the most highly trained networks).

We used standard back-propagation (Rumelhart et al., 1986) to minimize cross-entropy

between network output and category labels; as with the human subjects, the networks did

not receive probabilistic feedback during training. Weights were initialized to small random

values drawn from a zero-mean Gaussian distribution with s.d. 0.05. We used mini-batch

gradient descent with a batch size of 10, over a single epoch. We used L2 regularization with

regularization term α = 10−4.
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We decoded the optimal posterior p(C = 1 | rinput), which allowed us to compute

fractional information loss. Fractional information loss was defined as the KL-divergence

between p(C = 1 | rinput) and routput, normalized by the mutual information between the

category labels and rinput (Beck et al., 2011; Orhan and Ma, 2017).

Learning rate η decreased as a function of the batch number j:

ηj = η0

1 + τj
.

We used a constrained pattern search optimization (MATLAB’s patternsearch) to find, for

the gains associated with each subject, the η0 and τ that minimized fractional information

loss on a validation set. We used patternsearch because, unlike fmincon, it is well suited for

optimizing stochastic objective functions.

From each trained network, we generated a test set consisting of 2160 trials, the same

number of Task B trials completed by subjects in Chapter 3, experiment 1. routput was mapped

onto the 8 category and confidence responses using quantiles. We produced datasets from 4

separately trained networks for gains associated with each subject, generating 660 datasets

in total (15 numbers of training trials × 11 subject-derived sets of gains × 4 datasets).

We found that routput was a fairly good approximation of the optimal posterior

p(C = 1 | rinput), with some positive bias when the posterior was low (Figure 5.3a). We

also found that information loss and performance went down as the number of training

trials increased (Figure 5.3b,c). Both information loss and performance appear to reach

asymptote around 2× 104 trials; therefore, it is unlikely that our results would change with

more training.

117



5.2.3 Modeling

We fit the 660 network-generated datasets, obtaining AIC scores for each dataset and model.

The models used are described in Chapter 3 (and shown in Figure 3.15 and Table 3.2), except

that we removed the following mechanisms that we knew not to be present in the neural

network generative process:

• All lapse rates except for a uniform lapse rate over all 8 responses

• Orientation-dependent noise

• d noise (applicable to Bayesian models only)

As with our model recovery analyses (Sections 3.3.5 and 4.3.4), we used MLE and AIC

(rather than MCMC and LOO) for computational efficiency, due to the large number of

datasets being fitted.

After fitting, we computed the expected posterior probability distribution over models at

each number of training trials (Figure 5.3d; as described in Section 3.2.4.7).

5.3 Results

We trained biologically plausible feedforward neural networks (Figure 5.1) to perform the

task used in Chapters 3 and 4 with online binary category correctness feedback (Orhan and

Ma, 2017). After extracting confidence ratings from the networks, we found that confidence

behavior is qualitatively similar to that of human subjects (Figure 5.2).

We then fit the network output with the same models that we used to fit subject data. Lin

and Quad fit the data best, with Quad fitting best for data generated from less well-trained

networks, and Lin fitting best for data generated from highly trained networks (Figure 5.3d).

This transition is consistent with previous results (Orhan and Ma, 2017).
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Figure 5.2 Neural network task behav-
ior. (a) Mean button press as a function
of neural gain and true category. Com-
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We plotted the summed AIC differences for data generated from the most highly

trained networks in Figure 5.4, blue bars. Overall, Lin is the best-fitting model, out-

performing BayesWeak, the best-fitting Bayesian model, by summed AIC differences of

11662 [10011, 13522]. The overall rankings of all models fit to the trained networks was very

similar to that of the human models (Figure 3.15a), with a Spearman’s rank correlation

coefficient of 0.85. This convergence of neural network and human behavior suggests that

neural architecture may impose constraints on the type of behavior that can be produced.

5.3.1 Control

An alternative explanation of this result is that Bayes is too inflexible to fit any behavioral

dataset based on neural activity. To rule out this possibility, we used the rinput from the test

set of the 44 most highly trained networks (11 subject-derived sets of gains × 4 datasets).

We decoded optimal posterior probabilities from input unit activity p(C = 1 | rinput), on a

per-trial basis, and mapped these onto button presses using quantiles. We then fit these

datasets with the same models used to fit the datasets produced by the trained networks. We

found that BayesStrong was the best-fitting model, fitting these datasets better than Lin by

5739 [3935, 8045] and better than Quad by 800 [479, 1412] (Figure 5.4, black bars). Thus,
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Figure 5.3 Neural network optimality, task performance, and
model comparison. (a) Posterior probabilities decoded op-
timally from input unit activity, scattered against network
output. Each point is a test trial from a neural network that
was trained on the maximum number of training trials. For
clarity, a randomly selected subset of test trials is plotted.
(b) Fractional information loss as a function of the number
of training trials. Error bars represent ±1 s.e.m. across the
means of datasets generated with the gains derived from each
subject. (c) Black line indicates network test performance as
a function of the number of training trials. Gray error bar
indicates ±1 s.e.m. for the Task B performance of subjects
in experiment 1; all subjects completed 1440 training trials.
(d) Expected posterior probability that a model generated a
randomly chosen dataset (Stephan et al., 2009), as a function
of the number of training trials.
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the fact that Lin wins is not due to Bayes being generally inflexible, and suggests that the

architecture or training procedure of the neural networks constrains the type of behavior that

can be produced.

5.4 Discussion

We trained neural networks to perform one of our psychophysical tasks, as if the networks

were naïve human subjects. We then fit to the network output using some of the same

models that we fit to human data in Chapters 3 and 4. Although the training procedure

necessarily differed from that of the humans, we found that the trained networks produced

confidence responses that, like the human data in Chapter 3, were best fit by heuristic

models. This convergent result suggests that the structure of the neural network—and by

extension, the structure of the brain—limits its ability to produce accurate posterior estimates

in categorization tasks.

Scientific results are more convincing when paired with a normative explanation. A
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normative explanation may take the form of an evolutionary just-so story, as in “this result

is due to natural selection.” Alternatively or complementarily, an explanation may be

mechanistic, as in “this result is due to an upstream mechanism.” When a Bayesian model

gives the best fit to the data, evolutionary just-so stories are commonly used (Bowers and

Davis, 2012). But such explanations are not compatible with results showing that an organism

appears to have converged on a sub-optimal strategy. In Chapters 3 and 4, we found that

Bayesian models are not the best-fitting models to human data, and it therefore may be

useful to probe the mechanism to determine what might be causing this result.

Unfortunately, determining the actual neural mechanisms responsible for a behavior

is a long and difficult endeavor. This chapter, along with Orhan and Ma (2017), is an

early test of a possible way to probe the neural mechanisms of behavior, in silico, without

laborious experimentation. One possible future research program would be to, for a given

psychophysical task, thoroughly explore the space of behavioral models and neural network

architectures and training procedures. As these components are varied, one could measure

the similarity of trained network behavior to that of humans on the basis of model rankings,

perhaps by using Spearman’s rank correlation coefficient. This would be analogous to how

Yamins et al. (2014) vary neural network architecture, measuring similarity to real neural

activation by using percent explained variance in inferotemporal cortex.

After determining a network architecture that produces human-like behavior, the next

challenge would be to probe the internal workings of the trained networks. A parallel challenge

has been faced by machine learning and neural network researchers in general: some categories

of models perform better than others, but at a mechanistic level it is not always clear why.

In image classification, recent methods have been used for visualizing the representations and

functions performed by intermediate layers in deep networks (Dosovitskiy and Brox, 2015;

Mahendran and Vedaldi, 2015; Simonyan et al., 2013). Similar methods could be developed
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for understanding why a trained network produces some behavior. One could also add or

remove various components of the network to see which components are most associated with

human-like deviations from the Bayesian model.

We intend this chapter to be a small advance that points towards one possible way of

analyzing neural networks from a different behavioral angle than has been done in the past.

This approach could aid in the formation of hypotheses about mechanistic explanations for

behavior, which could then be tested in vivo.
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Chapter 6

Conclusion

In this dissertation, we have studied explicit human confidence ratings in perceptual

categorization. We have used formal model comparison to distinguish a large set of computa-

tional models of confidence, with a particular focus on testing whether confidence ratings are

Bayesian.

Previous work has proposed that confidence should be defined as Bayesian (Kepecs and

Mainen, 2012; Meyniel et al., 2015; Pouget et al., 2016). However, the notion that confidence

is Bayesian is not an established fact but a hypothesis, which we call the Bayesian Confidence

Hypothesis (BCH). The work presented here represents the most comprehensive test of the

BCH to date.

We opened this work by analyzing a proposed approach for studying confidence that

involves qualitative “signatures” of confidence (Chapter 2). We concluded that this approach

is unable to determine whether confidence ratings are Bayesian, and so we instead use

quantitative model comparison. In Chapter 3, we used a set of binary categorization tasks

in which we induced sensory uncertainty by manipulating stimulus factors such as contrast.

Chapter 4 was an extension of Chapter 3 in which we induced sensory uncertainty by

manipulating subjects’ attention. We concluded from Chapters 3 and 4 that there is mixed

evidence for the BCH. Qualitatively, it appears that people take their sensory uncertainty
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into account in an approximately Bayesian way. But quantitatively, heuristic models perform

as well as, or better than, the Bayesian models we tested. In Chapter 5, we trained simple

neural networks in an attempt to understand more about the origin of heuristic computations.

6.1 Potential caveats

6.1.1 Confidence behavior

Our results in Chapters 3 and 4 may be affected by two design choices we made in order to

obtain a naïve confidence report uninfluenced by reward or experimenter instruction. The

first design choice was to not incentivize confidence reports. As with other work (Aitchison

et al., 2015; Navajas et al., 2017; Sanders et al., 2016), this means that there was arguably

no reason for subjects to report Bayesian confidence. Future research could extend the

experiments conducted here, and investigate whether Bayesian models outperform heuristics

when Bayesian confidence reports is incentivized. Other techniques for measuring confidence,

such as post-decision wagering (Persaud et al., 2007), may be useful here. But, among other

issues (Grimaldi et al., 2015), using techniques that utilize reward may train observers to use

a particular model of confidence. In other words, a researcher who rewards some confidence

reports might be asking “can I train an observer’s confidence to be Bayesian?” instead of

“is confidence Bayesian?” We do not know of a way out of this paradox. Future researchers

should design a technique to collect confidence reports in which subjects have a reason to

provide Bayesian confidence reports, but are not incidentally trained to do so. The second

design choice was to not explicitly define “confidence” for the subject. Recent research

has indicated that the language used by the experimenter may influence confidence reports

(Rausch and Zehetleitner, 2016). Future researchers should investigate whether results depend

on the subject prompt. For instance, instead of asking merely for “confidence,” we could

have asked subjects to report “confidence that the choice is correct.” And in a ternary (or
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more) categorization task, one could also ask subjects to report “confidence that the choice is

better than the next best choice,” which would be a different quantity.

In this study, we only considered explicit confidence ratings, which differ from the implicit

confidence that can be gathered from nonhuman animals (Kepecs and Mainen, 2012) (e.g.,

by measuring how frequently they decline to make a difficult choice (Kiani and Shadlen,

2009), or how long they will wait for a reward (Kepecs et al., 2008)). It is possible that

implicit confidence might be more Bayesian (Chen et al., 2014). At a minimum, testing this

possibility would require an experiment using implicit confidence that could distinguish the

models presented here, which has not been done.

6.1.2 Modeling

In Chapters 3 to 5, the best-fitting models tend to have more parameters, raising the question

of whether our winning models are merely overfitting the data. We have tried to avoid this

issue as much as as possible by using a wide variety of model comparison metrics, including

those that approximate leave-one-out cross-validation (Section 3.2.4.7), but this may not

have been enough. Because real behavioral data is so complex, a highly-parameterized model

may fit better, even when the model is properly penalized for complexity, because it really is

closer to the complex model used by the organism. So even with proper model comparison

techniques, it may not be surprising that models with more parameters win out. This also

poses a problem for the conclusions that can be drawn from the neural network analysis in

Chapter 5. Perhaps the strong performance of the heuristic models in all three chapters

tells us more about the models themselves than about the behavior from the humans or the

networks.
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6.2 Topics not addressed

This dissertation concerns itself only with binary categorization tasks. Future confidence

research should focus on more naturalistic tasks, including categorization tasks with more

than two options. In real life, binary decisions may be less common than decisions that

involve choosing from many discrete categories, or along a continuous axis. Some recent

confidence work has taken a step in this direction by using a ternary categorization task (Li

and Ma, 2017).

This dissertation also does not address the question of confidence calibration (Baranski

and Petrusic, 1994; Brier, 1950). An old question in confidence is whether humans can report

well-calibrated, veridical confidence, i.e., confidence reports that are not only a function of,

but equal to the true probability of being correct. As described above, we did not explicitly

define “confidence” for the subject. However, if we had defined “confidence” as “probability

that a choice is correct,” and assigned probability ranges to each button (asking subjects, for

example, to press the “high confidence” button when their confidence was above 90%), we

could have tested how well-calibrated subjects are. If you tell me that you have read this

sentence, I will buy you a beer. In our model comparison framework, we could have tested

subject calibration by then fitting a model even stronger than BayesUltrastrong (Chapter 3),

with confidence boundary parameters (Section 3.2.4.3) fixed corresponding to the probability

ranges described to the subjects. Given the poor performance of BayesUltrastrong relative to

models with fewer constraints, we think it is unlikely that an even more constrained model

would do well; however, specific subject instructions may have a strong effect on the results.

Another topic that we do not cover is drift-diffusion models, which have become popular

in the confidence literature in recent years due to their ability to explain interactions between

choice, confidence, and reaction time, within a single framework (Kiani et al., 2014; Kiani and
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Shadlen, 2009; Pleskac and Busemeyer, 2010). Such models are typically used to describe

behavior in response to stimuli that vary in duration, usually because the subject is able

to terminate stimulus presentation. However, in these sorts of tasks, optimality is difficult

to characterize (Drugowitsch et al., 2014a), making it harder to test the BCH, our primary

goal. In our data, reaction times are more or less constant; they do not vary as a function of

confidence and category response, accuracy, or stimulus difficulty (Figure 3.7). Therefore, a

drift-diffusion model is unlikely to do a better job of explaining our results than the static

models used here.

6.3 Interpretation

One could take two different views of our heuristic model results in Chapters 3 and 4. The

first view is that the heuristics should be taken seriously as principled models (Gigerenzer

et al., 2011); here, the challenge is to demonstrate that they describe behavior in a variety of

tasks and can be motivated based on underlying principles. The second view is that these are

descriptive models simply meant to demonstrate that a simple model can provide a good fit

to the data; here, the heuristics are benchmarks for more principled models, and the challenge

is to find a principled model that fits the data as well as the heuristics. We lean towards the

second view and interpret our results as demonstrating that the BCH may not be the best

description of human confidence reports.

This conclusion might be unsatisfying to a reader in search of positive evidence of

some principled model. Although we do not think that such evidence is necessary to draw

conclusions about confidence reports, we of course see the appeal. To increase the odds of

finding positive support of a principled model, an experiment must be specifically designed

to distinguish multiple principled models; it is not enough to just test one and show a

reasonable fit. Again, it may help here to use tasks with more than two categories. A
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ternary categorization task, unlike a binary categorization task, is able to distinguish the

following three models: the posterior probability of the chosen category, the entropy of the

posterior distribution over categories, and the difference in probability between the most and

second-most probable categories; Li and Ma (2017) find evidence for the last model, arguably

the least principled model of the three.

What do our findings tell us about the neural basis of confidence? Previous studies have

found that neural activity in some brain areas (e.g., human medial temporal lobe (Rutishauser

et al., 2015) and prefrontal cortex (Fleming et al., 2012), monkey lateral intraparietal cortex

(Kiani and Shadlen, 2009) and pulvinar (Komura et al., 2013), rodent orbitofrontal cortex

(Kepecs et al., 2008)) is associated with behavioral indicators of confidence, and/or with the

distance of a stimulus to a decision boundary. However, such studies mostly used stimuli

that vary along a single dimension (e.g., net retinal dot motion energy, mixture of two odors).

Because measurement is indistinguishable from the probability of being correct in these classes

of tasks, neural activity associated with confidence may represent either the measurement or

the probability of being correct (Aitchison et al., 2015). In addition to the recommendation

of Aitchison et al. (2015) to distinguish between these possibilities by varying stimuli along

two dimensions, we recommend fitting both Bayesian and non-Bayesian probabilistic models

to behavior. In view of the relatively poor performance of the Bayesian models in Chapter 3,

the proposal (Pouget et al., 2016) to correlate behavior and neural activity with predictions

of the Bayesian confidence model should be viewed with skepticism.

There are many neural constraints that may give rise to non-Bayesian behavior, which we

have described in Section 5.1. These constraints may be responsible for behaviors in which

humans seem to adopt a non-Bayesian solution that “satisfices” (Bowers and Davis, 2012;

Jones and Love, 2011; Simon, 1956). Our results show that confidence reports may be one

additional behavior in which humans “satisfice.”
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We close with some general thoughts on confidence research. As is the case in many

scientific fields, the literature contains a substantial number of conflicting results. However,

our ability to resolve these conflicts seems to be hampered by several factors. First, behavior

seems to be affected by relatively minor changes in experimental paradigm, such as confidence

report type (Aitchison and Latham, 2014; Rausch and Zehetleitner, 2016, although not in

Chapter 3), which complicates our ability to compare results across studies. We think that

differences across confidence report type is unlikely to have real-world significance, and may

not be worthy of much future study. Second, there are different classes of models which

may not be equally applicable to all experiments. For instance, as described in Section 6.2,

drift-diffusion models may not be useful for explaining confidence behaviors in all situations.

In our opinion, there has been little effort put into unifying disparate experimental and

theoretical work. And finally, the interpretation of confidence behavior is made difficult by

the three-way tension between eliciting “natural” confidence reports, motivating subjects to

respond accurately, and avoiding training them to respond according to a particular model

(Section 6.1.1); this tension is even greater in nonhuman animal research. Given all this, we

are not very optimistic about the hopes for a better understanding of confidence reports,

unless the field undergoes some major unforeseen transformation. In conclusion, we take a

different stance than some of our colleagues (Drugowitsch, 2016); we are not at all confident

in our understanding of the nature of confidence.
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